Testing 16S Primers for Proper Identification of Cyanobacterial Communities in Small Water Bodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sampling and Samples
2.3. Environmental Samples
2.4. DNA Extraction
2.5. Primer Design and Characterization
2.6. PCR Amplifications with Studied Primers
2.7. Sequencing and Bioinformatics
2.8. Statistical and Phylogenetic Analysis
3. Results
3.1. In Silico Testing of Designed and Commonly Used Primers
3.2. In Vitro Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolhuis, H.; Stal, L.J. Analysis of Bacterial and Archaeal Diversity in Coastal Microbial Mats Using Massive Parallel 16S rRNA Gene Tag Sequencing. ISME J. 2011, 5, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Winand, R.; Bogaerts, B.; Hoffman, S.; Lefevre, L.; Delvoye, M.; Van Braekel, J.; Fu, Q.; Roosens, N.H.; Cj, S.; Keersmaecker, D.; et al. Targeting the 16S RRNA Gene for Bacterial Identification in Complex Mixed Samples: Comparative Evaluation of Second (Illumina) and Third (Oxford Nanopore Technologies) Generation Sequencing Technologies. Int. J. Mol. Sci. 2019, 21, 298. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Anslan, S.; Hildebrand, F.; Bork, P.; Tedersoo, L. Brief Report Newly Designed 16S RRNA Metabarcoding Primers Amplify Diverse and Novel Archaeal Taxa from the Environment. Environ. Microbiol. Rep. 2018, 11, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Casero, M.C.; Velázquez, D.; Medina-Cobo, M.; Quesada, A.; Cirés, S. Unmasking the Identity of Toxigenic Cyanobacteria Driving a Multi-Toxin Bloom by High-Throughput Sequencing of Cyanotoxins Genes and 16S rRNA Metabarcoding. Sci. Total Environ. 2019, 665, 367–378. [Google Scholar] [CrossRef]
- Abdala Asbun, A.; Besseling, M.A.; Balzano, S.; van Bleijswijk, J.D.L.; Witte, H.J.; Villanueva, L.; Engelmann, J.C. Cascabel: A Scalable and Versatile Amplicon Sequence Data Analysis Pipeline Delivering Reproducible and Documented Results. Front. Genet. 2020, 11, 489357. [Google Scholar] [CrossRef] [PubMed]
- Pérez Gallego, R.; Bale, N.J.; Sinninghe Damste, J.S.; Villanueva, L. Developing a Genetic Approach to Target Cyanobacterial Producers of Heterocyte Glycolipids in the Environment. Front. Microbiol. 2023, 14, 1257040. [Google Scholar] [CrossRef] [PubMed]
- Kirk Harris, J.; Gregory Caporaso, J.; Walker, J.J.; Spear, J.R.; Gold, N.J.; Robertson, C.E.; Hugenholtz, P.; Goodrich, J.; McDonald, D.; Knights, D.; et al. Phylogenetic Stratigraphy in the Guerrero Negro Hypersaline Microbial Mat. ISME J. 2013, 7, 50–60. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes. PLoS ONE 2009, 4, 1–9. [Google Scholar] [CrossRef]
- Straub, D.; Blackwell, N.; Langarica-Fuentes, A.; Peltzer, A.; Nahnsen, S.; Kleindienst, S. Interpretations of Environmental Microbial Community Studies Are Biased by the Selected 16S rRNA (Gene) Amplicon Sequencing Pipeline. Front. Microbiol. 2020, 11, 550420. [Google Scholar] [CrossRef]
- Kleinteich, J.; Hildebrand, F.; Wood, S.A.; CirÌs, S.; Agha, R.; Quesada, A.; Pearce, D.A.; Convey, P.; Küpper, F.C.; Dietrich, D.R. Diversity of Toxin and Non-Toxin Containing Cyanobacterial Mats of Meltwater Ponds on the Antarctic Peninsula: A Pyrosequencing Approach. Antarct. Sci. 2014, 26, 521–532. [Google Scholar] [CrossRef]
- Rasuk, M.C.; Fernández, A.B.; Kurth, D.; Contreras, M.; Novoa, F.; Poiré, D.; Farías, M.E. Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert. Microb. Ecol. 2016, 71, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Jasser, I.; Kostrzewska-Szlakowska, I.; Kwiatowski, J.; Navruzshoev, D.; Suska-Malawska, M.; Khomutovska, N. Morphological and Molecular Diversity of Benthic Cyanobacteria Communities versus Environmental Conditions in Shallow, High Mountain Water Bodies in Eastern Pamir Mountains (Tajikistan). Pol. J. Ecol. 2020, 67, 286–304. [Google Scholar] [CrossRef]
- Sandzewicz, M.; Khomutovska, N.; Łach, Ł.; Kwiatowski, J.; Niyatbekov, T.; Suska-Malawska, M.; Jasser, I. Salinity Matters the Most: How Environmental Factors Shape the Diversity and Structure of Cyanobacterial Mat Communities in High Altitude Arid Ecosystems. Front. Microbiol. 2023, 14, 1–17. [Google Scholar] [CrossRef]
- Khomutovska, N.; De Los Ríos, A.; Syczewski, M.D.; Jasser, I. Connectivity of Edaphic and Endolithic Microbial Niches in the Cold Mountain Desert of Eastern Pamir (Tajikistan). Biology 2021, 10, 314. [Google Scholar] [CrossRef]
- Khomutovska, N.; Jerzak, M.; Kostrzewska-Szlakowska, I.; Kwiatowski, J.; Suska-Malawska, M.; Syczewski, M.; Jasser, I. Life in Extreme Habitats: Diversity of Endolithic Microorganisms from Cold Desert Ecosystems of Eastern Pamir. Pol. J. Ecol. 2017, 65, 303–319. [Google Scholar] [CrossRef]
- Khomutovska, N.; De Los Ríos, A.; Jasser, I. Microorganisms Diversity and Colonization Strategies of Endolithic Cyanobacteria in the Cold Mountain Desert of Pamir. Microorganisms 2020, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Gkelis, S.; Panou, M.; Konstantinou, D.; Apostolidis, P.; Kasampali, A.; Papadimitriou, S.; Kati, D.; Di Lorenzo, G.M.; Ioakeim, S.; Zervou, S.K.; et al. Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. Toxins 2019, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Ar, K.; Gkelis, S.; Vardaka, E.; Moustaka-gouni, M. Limnologica Morphological and Molecular Analysis of Bloom-Forming Cyanobacteria in Two Eutrophic, Shallow Mediterranean Lakes. Limnologica 2011, 41, 167–173. [Google Scholar] [CrossRef]
- Codd, G.; Bell, S.; Kaya, K.; Ward, C.; Beattie, K.; Metcalf, J. Cyanobacterial Toxins, Exposure Routes and Human Health. Eur. J. Phycol. 1999, 34, 405–415. [Google Scholar] [CrossRef]
- Wood, S.A.; Kelly, L.T.; Bouma-Gregson, K.; Humbert, J.-F.; Laughinghouse, H.D., IV; Lazorchak, J.; McAllister, T.G.; McQueen, A.; Pokrzywinski, K.; Puddick, J.; et al. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 2020, 65, 1824. [Google Scholar] [CrossRef]
- Quiblier, C.; Wood, S.; Echenique Subiabre, I.; Heath, M.; Villeneuve, A.; Humbert, J.-F. A Review of Current Knowledge on Toxic Benthic Freshwater Cyanobacteria--Ecology, Toxin Production and Risk Management. Water Res. 2013, 47, 5464–5479. [Google Scholar] [CrossRef]
- Brasell, K.A.; Heath, M.W.; Ryan, K.G.; Wood, S.A. Successional Change in Microbial Communities of Benthic Phormidium-Dominated Biofilms. Microb. Ecol. 2015, 69, 254–266. [Google Scholar] [CrossRef]
- Kleinteich, J.; Wood, S.A.; Puddick, J.; Schleheck, D.; Küpper, F.C.; Dietrich, D. Potent Toxins in Arctic Environments—Presence of Saxitoxins and an Unusual Microcystin Variant in Arctic Freshwater Ecosystems. Chem. Biol. Interact. 2013, 206, 423–431. [Google Scholar] [CrossRef]
- Tikhonova, I.; Kuzmin, A.; Deeva, D.; Sorokovikova, E.; Potapov, S.; Lomakina, A.; Belykh, O. Cyanobacteria Nostoc Punctiforme from Abyssal Benthos of Lake Baikal: Unique Ecology and Metabolic Potential. Indian J. Microbiol. 2017, 57, 422–426. [Google Scholar] [CrossRef]
- Gaget, V.; Keulen, A.; Lau, M.; Monis, P.; Brookes, J.D. DNA Extraction from Benthic Cyanobacteria: Comparative Assessment and Optimization. J. Appl. Microbiol. 2016, 122, 294–304. [Google Scholar] [CrossRef]
- Lee, E.; Khurana, M.S.; Whiteley, A.S.; Monis, P.T.; Bath, A.; Gordon, C.; Ryan, U.M.; Paparini, A. Novel Primer Sets for next Generation Sequencing-Based Analyses of Water Quality. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef]
- Khomutovska, N.; Sandzewicz, M.; Łach, Ł.; Suska-Malawska, M.; Chmielewska, M.; Mazur-Marzec, H.; Cegłowska, M.; Niyatbekov, T.; Wood, S.A.; Puddick, J.; et al. Limited Microcystin, Anatoxin and Cylindrospermopsin Production by Cyanobacteria from Microbial Mats in Cold Deserts. Toxins 2020, 12, 244. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Lorenzen, C.J. Yellow-Green Algae with Chlorophyllidec. J. Phycol. 1972, 8, 10–14. [Google Scholar]
- Rippka, R.; Deruelles, J.; Waterbury, J.B. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Bradley, R.K.; Roberts, A.; Smoot, M.; Juvekar, S.; Do, J. Fast Statistical Alignment. PLoS Comput. Biol. 2009, 5, 1000392. [Google Scholar] [CrossRef]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Roush, D.; Giraldo-Silva, A.; Garcia-Pichel, F. Cydrasil 3, a Curated 16S RRNA Gene Reference Package and Web App for Cyanobacterial Phylogenetic Placement. Sci. Data 2021, 8, 230. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M.D.; Guiry, G.M. Available online: https://www.algaebase.org (accessed on 10 April 2024).
- Fadeev, E.; Cardozo-mino, M.G.; Rapp, J.Z.; Bienhold, C.; Salter, I.; Salman-carvalho, V.; Molari, M.; Tegetmeyer, H.E.; Buttigieg, P.L.; Boetius, A. Comparison of Two 16S RRNA Studies of Arctic Microbial Communities. Front. Microbiol. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sabat, A.J.; Van Zanten, E.; Akkerboom, V.; Wisselink, G.; Van Slochteren, K.; De Boer, R.F.; Hendrix, R.; Friedrich, A.W.; Rossen, J.W.A.; Kooistra-Smid, A.M.D. Targeted Next-Generation Sequencing of the 16S-23S RRNA Region for Culture-Independent Bacterial Identification-Increased Discrimination of Closely Related Species. Sci. Rep. 2017, 7, 3434. [Google Scholar] [CrossRef]
- Komarek, J. Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches. Algae 2006, 21, 349–375. [Google Scholar] [CrossRef]
- Li, X.; Huo, S.; Xi, B. Updating the Resolution for 16S RRNA OTUs Clustering Reveals the Cryptic Cyanobacterial Genus and Species. Ecol. Indic. 2020, 117, 106695. [Google Scholar] [CrossRef]
- Li, X.C.; Huo, S.; Zhang, J.; Ma, C.; Xiao, Z.; Zhang, H.; Xi, B.; Xia, X. Metabarcoding Reveals a More Complex Cyanobacterial Community than Morphological Identification. Ecol. Indic. 2019, 107, 105653. [Google Scholar] [CrossRef]
- Zou, S.; Smith, L. Comprehensive Primer Sets and Cost Efficient Multiplex PCR-based eDNA Sequencing for Community Dynamics of Cyanobacteria, Eukaryotic Phytoplankton and Zooplankton in Lake. Res. Sq. 2020, 1–29. [Google Scholar] [CrossRef]
- Jasser, I.; Panou, M.; Khomutovska, N.; Sandzewicz, M.; Panteris, E.; Niyatbekov, T.; Łach, Ł.; Kwiatowski, J.; Kokociński, M.; Gkelis, S. Cyanobacteria in Hot Pursuit: Characterization of Cyanobacteria Strains, Including Novel Taxa, Isolated from Geothermal Habitats from Different Ecoregions of the World. Mol. Phylogenet. Evol. 2022, 170, 107454. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Direction | Target Region | Position | Sequence (5′ to 3′) | Temp. Annealing [°C] | Reference |
---|---|---|---|---|---|---|
S-D-Bact-0341-b-S-17 | F | V3–V4 | 341 | CCTACGGGNGGCWGCAG | 53 °C | [2] |
S-D-Bact-0785-a-A-21 | R | 785 | GACTACHVGGGTATCTAATCC | |||
C_773F | F | V4–V6 | 773 | AAWGGGATTAGATACCCCWGT | 61 °C | present study |
C_1200R | R | 1200 | RGGKTGCGCTCGTTGCGGGA | |||
1328F | F | V6 | 870 | GCTAACGCGTTAAGTATCCCGCCTG | 55 °C | [27] |
1664R | R | 1160 | GTCTCTCTAGAGTGCCCAACTTAATG |
Sample ID | Location | EC, uS | Macroscopic Characteristic of Mats | Morphology-Based Identification of Mat-Forming Microorganisms (Optical Microscope) |
---|---|---|---|---|
Cyx8 | Sassykkul (Bulunkul subregion) | 347 | Multilayer soft mat, high content of EPS | Leptolyngbya sp., Chlorogloea sp., Nostoc punctiforme, green algae (Haematococccus pluvialis) |
Cyx9 | Alichur (Bulunkul subregion) | 2720 | Unlayered beneath soil—mat dominated by filamentous cyanobacteria covered by a mineral soil layer | Calothrix spp., Nostoc commune, Chlorogloea sp., Phormidium sp., Leptolyngbya sp., green algae (Haematococcus pluvialis) |
Cyx15a | hot spring near Gunt river (Bulunkul subregion) | 1791 | Unlayered type—mat dominated by filamentous cyanobacteria, lower content of EPS compared to Cyx8 | Hilbrichtia pamiria gen. sp. nov., Oscillatoria sp., |
Sample ID | Shannon_B | Faith_PD_B | Observed_Features/ASVs | Pielou_Evenness_B | Shannon_C | Pielou_Evenness_C | Nr of Cyanobacterial Families | Observed ASVs_C |
---|---|---|---|---|---|---|---|---|
Cyx15a_V3-V4 | 6.51 | 21.91 | 184 | 0.86 | 1.41 | 0.68 | 5 | 8 |
Cyx15a_V4-V6 | 1.68 | 3.96 | 9 | 0.53 | 1.16 | 0.56 | 5 | 8 |
Cyx15a_V6 | 1.18 | 4.85 | 22 | 0.26 | 0.67 | 0.32 | 3 | 8 |
Cyx8_V3-V4 | 5.15 | 15.03 | 133 | 0.73 | 2.18 | 0.83 | 3 | 14 |
Cyx8_V4-V6 | 1.22 | 4.00 | 8 | 0.41 | 0.84 | 0.38 | 3 | 9 |
Cyx8_V6 | 0.41 | 3.98 | 14 | 0.11 | 0.26 | 0.11 | 3 | 11 |
Cyx9_V3-V4 | 7.83 | 37.86 | 453 | 0.89 | 2.41 | 0.77 | 5 | 23 |
Cyx9_V4-V6 | 2.54 | 5.57 | 53 | 0.44 | 1.67 | 0.43 | 10 | 48 |
Cyx9_V6 | 2.39 | 7.13 | 84 | 0.37 | 1.51 | 0.39 | 8 | 46 |
Mix_V3-V4 | 5.64 | 14.45 | 132 | 0.80 | 2.75 | 0.74 | 10 | 41 |
Mix_V4-V6 | 2.85 | 4.27 | 23 | 0.63 | 2.01 | 0.64 | 9 | 23 |
Mix_V6 | 2.56 | 4.74 | 29 | 0.53 | 1.74 | 0.56 | 7 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łach, Ł.; Khomutovska, N.; Kwiatowski, J.; Jasser, I. Testing 16S Primers for Proper Identification of Cyanobacterial Communities in Small Water Bodies. Water 2024, 16, 1357. https://doi.org/10.3390/w16101357
Łach Ł, Khomutovska N, Kwiatowski J, Jasser I. Testing 16S Primers for Proper Identification of Cyanobacterial Communities in Small Water Bodies. Water. 2024; 16(10):1357. https://doi.org/10.3390/w16101357
Chicago/Turabian StyleŁach, Łukasz, Nataliia Khomutovska, Jan Kwiatowski, and Iwona Jasser. 2024. "Testing 16S Primers for Proper Identification of Cyanobacterial Communities in Small Water Bodies" Water 16, no. 10: 1357. https://doi.org/10.3390/w16101357
APA StyleŁach, Ł., Khomutovska, N., Kwiatowski, J., & Jasser, I. (2024). Testing 16S Primers for Proper Identification of Cyanobacterial Communities in Small Water Bodies. Water, 16(10), 1357. https://doi.org/10.3390/w16101357