A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning
Abstract
:1. Introduction
2. CNNs/RNNs for Hydrological Forecasting
2.1. Principle of CNNs/RNNs
2.2. CNNs for Prediction
2.3. RNNs for Prediction
2.4. Summary
3. LSTM for Hydrological Forecasting
3.1. Principle of LSTM
3.2. Basic LSTM for Prediction
3.3. Improved LSTM for Prediction
3.4. Summary
4. GRUs and Others for Hydrological Forecasting
4.1. Principle of GRUs and Others
4.2. GRUs for Prediction
4.3. Other Methods for Prediction
4.4. Summary
5. Discussion
5.1. DL vs. Traditional ML and Physical Models
5.2. Comparison of Various DL Algorithms
5.3. Advantages and Disadvantages of Hybrid Models
5.4. Challenges in the Application of DL Models
6. Outlooks
- (1)
- CNN models continue to be relevant in hydrological forecasting and need to be utilized for their unique advantages in handling massive image data. Moving forward, CNNs and improved CNN models can be integrated with other deep models to achieve hydrological data analyses that not only include time-series data (short-/medium-/long-term) but also encompass time-series image data (optical/remote sensing), which can further improve the prediction performance of these models. The RNN model, as a basic time-series prediction method, is constrained by its structure, and it needs to be further improved to achieve more applications in the field of hydrological prediction.
- (2)
- With the deepening of research, there will be a tendency in the future to design more complex deep learning models to better capture the inherent coupling relationships in hydrological forecasting sequence data. New variants and improved model structures based on LSTM continue to emerge, such as improved LSTM variants, more attention mechanisms, more parallel processing, and more effective weight sharing. This enables the design of deeper and more effective LSTM structures, utilizing GPUs and TPUs for more effective parallel processing, thereby improving the training and inference speed of the model.
- (3)
- Both GRUs and GNNs are expected to achieve greater breakthroughs in the future, especially in the field of hydrological forecasting. For GRUs, attention mechanisms and improved gating mechanisms can be introduced to better handle hydrological sequences of variable length and their complex coupling relationships. For GNNs, the efficiency and performance of processing large-scale graph data can be improved by introducing new graph convolution operators and developing efficient graph sampling strategies.
- (4)
- The combination of physical properties and deep learning helps to explain the working principle of the model and improve its interpretability, which is crucial for critical hydrological forecasting applications and helps to enhance trust and acceptance of the model’s results. In the future, hybrid models should also have an active learning ability and a self-iterative evolution ability, and continuously improve hydrological forecasting performance.
- (5)
- Spatial autocorrelation challenges DL models due to data and weight matrix issues. Future solutions may include innovative model structures and feature methods. Ensuring the model’s applicability across different regions encounters challenges such as data bias, imbalance, and the integration of spatial information, reflecting spatial heterogeneity. Overcoming these obstacles may require model optimization, data expansion, and interdisciplinary collaboration. Multi-scale feature representation involves scale matching and computational costs. Future solutions may focus on improving model performance and applicability to address this issue.
Author Contributions
Funding
Conflicts of Interest
References
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite Imaging Reveals Increased Proportion of Population Exposed to Floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef]
- Oyelakin, R.; Yang, W.; Krebs, P. Analysing Urban Flooding Risk with CMIP5 and CMIP6 Climate Projections. Water 2024, 16, 474. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Huang, J.; Kang, J.; Han, D. Analysis of the Public Flood Risk Perception in a Flood-Prone City: The Case of Jingdezhen City in China. Water 2018, 10, 1577. [Google Scholar] [CrossRef]
- Available online: https://www.huxiu.com/article/446118.html (accessed on 24 March 2024).
- Jongman, B. The Fraction of the Global Population at Risk of Floods Is Growing. Nature 2021, 596, 37–38. [Google Scholar] [CrossRef]
- Global Flood Database. Available online: https://global-flood-database.cloudtostreet.ai./ (accessed on 28 March 2024).
- He, J.; Zhang, L.; Xiao, T.; Wang, H.; Luo, H. Deep Learning Enables Super-Resolution Hydrodynamic Flooding Process Modeling under Spatiotemporally Varying Rainstorms. Water Res. 2023, 239, 120057. [Google Scholar] [CrossRef]
- Libya|History, People, Map, & Government|Britannica. Available online: https://www.britannica.com/event/Libya-flooding-of-2023 (accessed on 24 March 2024).
- De La Fuente, A.; Meruane, V.; Meruane, C. Hydrological Early Warning System Based on a Deep Learning Runoff Model Coupled with a Meteorological Forecast. Water 2019, 11, 1808. [Google Scholar] [CrossRef]
- Artinyan, E.; Vincendon, B.; Kroumova, K.; Nedkov, N.; Tsarev, P.; Balabanova, S.; Koshinchanov, G. Flood Forecasting and Alert System for Arda River Basin. J. Hydrol. 2016, 541, 457–470. [Google Scholar] [CrossRef]
- Li, Z. Deep Learning-Based Hydrological Time Series Prediction Model and Interpretability Quantitative Analysis Study. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2023. [Google Scholar]
- Li, Z.; Kang, L.; Zhou, L.; Zhu, M. Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction. Water 2021, 13, 575. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Bello, I.T.; Taiwo, R.; Esan, O.C.; Adegoke, A.H.; Ijaola, A.O.; Li, Z.; Zhao, S.; Wang, C.; Shao, Z.; Ni, M. AI-Enabled Materials Discovery for Advanced Ceramic Electrochemical Cells. Energy AI 2024, 15, 100317. [Google Scholar] [CrossRef]
- Choi, J.B.; Nguyen, P.C.H.; Sen, O.; Udaykumar, H.S.; Baek, S. Artificial Intelligence Approaches for Energetic Materials by Design: State of the Art, Challenges, and Future Directions. Propellants Explos. Pyrotech. 2023, 48, e202200276. [Google Scholar] [CrossRef]
- He, W.; Liu, T.; Ming, W.; Li, Z.; Du, J.; Li, X.; Guo, X.; Sun, P. Progress in Prediction of Remaining Useful Life of Hydrogen Fuel Cells Based on Deep Learning. Renew. Sustain. Energy Rev. 2024, 192, 114193. [Google Scholar] [CrossRef]
- Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A Systematic Review of Machine Learning Methods Applied to Fuel Cells in Performance Evaluation, Durability Prediction, and Application Monitoring. Int. J. Hydrog. Energy 2023, 48, 5197–5228. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Liu, T.; Liu, Z.; Guo, X.; Du, J.; Li, X.; Sun, P.; Ming, W. Research Progress and Application of Deep Learning in Remaining Useful Life, State of Health and Battery Thermal Management of Lithium Batteries. J. Energy Storage 2023, 70, 107868. [Google Scholar] [CrossRef]
- Ming, W.; Guo, X.; Zhang, G.; Liu, Y.; Wang, Y.; Zhang, H.; Liang, H.; Yang, Y. Recent Advances in the Precision Control Strategy of Artificial Pancreas. Med. Biol. Eng. Comput. 2024, 62, 1615–1638. [Google Scholar] [CrossRef] [PubMed]
- Druzhkov, P.N.; Kustikova, V.D. A Survey of Deep Learning Methods and Software Tools for Image Classification and Object Detection. Pattern Recognit. Image Anal. 2016, 26, 9–15. [Google Scholar] [CrossRef]
- He, W.; Liu, T.; Han, Y.; Ming, W.; Du, J.; Liu, Y.; Yang, Y.; Wang, L.; Jiang, Z.; Wang, Y.; et al. A Review: The Detection of Cancer Cells in Histopathology Based on Machine Vision. Comput. Biol. Med. 2022, 146, 105636. [Google Scholar] [CrossRef]
- Ming, W.; Shen, F.; Zhang, H.; Li, X.; Ma, J.; Du, J.; Lu, Y. Defect Detection of LGP Based on Combined Classifier with Dynamic Weights. Measurement 2019, 143, 211–225. [Google Scholar] [CrossRef]
- Ming, W.; Cao, C.; Zhang, G.; Zhang, H.; Zhang, F.; Jiang, Z.; Yuan, J. Review: Application of Convolutional Neural Network in Defect Detection of 3C Products. IEEE Access 2021, 9, 135657–135674. [Google Scholar] [CrossRef]
- Ming, W.; Shen, F.; Li, X.; Zhang, Z.; Du, J.; Chen, Z.; Cao, Y. A Comprehensive Review of Defect Detection in 3C Glass Components. Measurement 2020, 158, 107722. [Google Scholar] [CrossRef]
- Da Silva, D.G.; Meneses, A.A.D.M. Comparing Long Short-Term Memory (LSTM) and Bidirectional LSTM Deep Neural Networks for Power Consumption Prediction. Energy Rep. 2023, 10, 3315–3334. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, T.; Kim, S.; Park, S. Energy Consumption Prediction System Based on Deep Learning with Edge Computing. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics Technology (ICET), Chengdu, China, 10–13 May 2019; pp. 473–477. [Google Scholar]
- Shu, Z.R.; Jesson, M. Estimation of Weibull Parameters for Wind Energy Analysis across the UK. J. Renew. Sustain. Energy 2021, 13, 023303. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Rikhtehgar Ghiasi, A.; Yaseen, Z.M.; Sorman, A.U.; Abualigah, L. A Novel Intelligent Deep Learning Predictive Model for Meteorological Drought Forecasting. J. Ambient. Intell. Hum. Comput. 2023, 14, 10441–10455. [Google Scholar] [CrossRef]
- Pullman, M.; Gurung, I.; Maskey, M.; Ramachandran, R.; Christopher, S.A. Applying Deep Learning to Hail Detection: A Case Study. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10218–10225. [Google Scholar] [CrossRef]
- Chen, X.; Long, Z. E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model. Sustainability 2023, 15, 5882. [Google Scholar] [CrossRef]
- Huang, J.; Chai, J.; Cho, S. Deep Learning in Finance and Banking: A Literature Review and Classification. Front. Bus. Res. China 2020, 14, 13. [Google Scholar] [CrossRef]
- Bentivoglio, R.; Isufi, E.; Jonkman, S.N.; Taormina, R. Deep Learning Methods for Flood Mapping: A Review of Existing Applications and Future Research Directions. Hydrol. Earth Syst. Sci. 2022, 26, 4345–4378. [Google Scholar] [CrossRef]
- Shen, C.; Laloy, E.; Elshorbagy, A.; Albert, A.; Bales, J.; Chang, F.-J.; Ganguly, S.; Hsu, K.-L.; Kifer, D.; Fang, Z.; et al. HESS Opinions: Incubating Deep-Learning-Powered Hydrologic Science Advances as a Community. Hydrol. Earth Syst. Sci. 2018, 22, 5639–5656. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Xu, L.; Liu, L.; de Silva, C.W. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks. IEEE/ASME Trans. Mechatron. 2018, 23, 101–110. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, Y.; Li, C.; Han, Y.; Cui, Y.; Yu, B. Energy Optimization and Prediction Modeling of Petrochemical Industries: An Improved Convolutional Neural Network Based on Cross-Feature. Energy 2020, 194, 116851. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Li, J.; Sun, Q.; Wang, H. NGCU: A New RNN Model for Time-Series Data Prediction. Big Data Res. 2022, 27, 100296. [Google Scholar] [CrossRef]
- Ouyang, P.; Yin, S.; Wei, S. A Fast and Power Efficient Architecture to Parallelize LSTM Based RNN for Cognitive Intelligence Applications. In Proceedings of the 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin TX USA, 18–22 June 2017; pp. 1–6. [Google Scholar]
- Sepahvand, A.; Golkarian, A.; Billa, L.; Wang, K.; Rezaie, F.; Panahi, S.; Samadianfard, S.; Khosravi, K. Evaluation of Deep Machine Learning-Based Models of Soil Cumulative Infiltration. Earth Sci. Inf. 2022, 15, 1861–1877. [Google Scholar] [CrossRef]
- Han, H.; Hou, J.; Bai, G.; Li, B.; Wang, T.; Li, X.; Gao, X.; Su, F.; Wang, Z.; Liang, Q.; et al. A Deep Learning Technique-Based Automatic Monitoring Method for Experimental Urban Road Inundation. J. Hydroinformatics 2021, 23, 764–781. [Google Scholar] [CrossRef]
- Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The Role of Deep Learning in Urban Water Management: A Critical Review. Water Res. 2022, 223, 118973. [Google Scholar] [CrossRef] [PubMed]
- Windheuser, L.; Karanjit, R.; Pally, R.; Samadi, S.; Hubig, N.C. An End-To-End Flood Stage Prediction System Using Deep Neural Networks. Earth Space Sci. 2023, 10, e2022EA002385. [Google Scholar] [CrossRef]
- Sharma, S.; Kumari, S. Comparison of Machine Learning Models for Flood Forecasting in the Mahanadi River Basin, India. J. Water Clim. Change 2024, 15, 1629–1652. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Krebs, P. Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach. Water 2022, 14, 993. [Google Scholar] [CrossRef]
- Aderyani, F.R.; Jamshid Mousavi, S.; Jafari, F. Short-Term Rainfall Forecasting Using Machine Learning-Based Approaches of PSO-SVR, LSTM and CNN. J. Hydrol. 2022, 614, 128463. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, Y.; Xia, X.; Liang, Q.; Soltoggio, A.; Kabir, S.R. A Multi-Scale Map Approach Based on a Deep Learning CNN Model for Reconstructing High-Resolution Urban DEMs. Water 2020, 12, 1369. [Google Scholar] [CrossRef]
- Haidar, A.; Verma, B. Monthly Rainfall Forecasting Using One-Dimensional Deep Convolutional Neural Network. IEEE Access 2018, 6, 69053–69063. [Google Scholar] [CrossRef]
- Coulibaly, P.; Baldwin, C.K. Nonstationary Hydrological Time Series Forecasting Using Nonlinear Dynamic Methods. J. Hydrol. 2005, 307, 164–174. [Google Scholar] [CrossRef]
- Haykin, S.; Li, L. Nonlinear Adaptive Prediction of Nonstationary Signals. IEEE Trans. Signal Process. 1995, 43, 526–535. [Google Scholar] [CrossRef]
- Güldal, V.; Tongal, H. Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting. Water Resour. Manag. 2010, 24, 105–128. [Google Scholar] [CrossRef]
- Cai, B.; Yu, Y. Flood Forecasting in Urban Reservoir Using Hybrid Recurrent Neural Network. Urban. Clim. 2022, 42, 101086. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, Y.-T.; Kim, B.-H. A Study on the Optimal Deep Learning Model for Dam Inflow Prediction. Water 2022, 14, 2766. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Zang, H.; Xu, D. Is the LSTM Model Better than RNN for Flood Forecasting Tasks? A Case Study of HuaYuankou Station and LouDe Station in the Lower Yellow River Basin. Water 2023, 15, 3928. [Google Scholar] [CrossRef]
- Karbasi, M.; Jamei, M.; Ali, M.; Malik, A.; Chu, X.; Farooque, A.A.; Yaseen, Z.M. Development of an Enhanced Bidirectional Recurrent Neural Network Combined with Time-Varying Filter-Based Empirical Mode Decomposition to Forecast Weekly Reference Evapotranspiration. Agric. Water Manag. 2023, 290, 108604. [Google Scholar] [CrossRef]
- Ayele, E.G.; Ergete, E.T.; Geremew, G.B. Predicting the Peak Flow and Assessing the Hydrologic Hazard of the Kessem Dam, Ethiopia Using Machine Learning and Risk Management Centre-Reservoir Frequency Analysis Software. J. Water Clim. Change 2024, 15, 370–391. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Liu, R.; Men, C.; Guo, L.; Miao, Y.; Jiao, L.; Wang, Y.; Shoaib, M.; Xia, X. Sequence-Based Statistical Downscaling and Its Application to Hydrologic Simulations Based on Machine Learning and Big Data. J. Hydrol. 2020, 586, 124875. [Google Scholar] [CrossRef]
- Kao, I.-F.; Liou, J.-Y.; Lee, M.-H.; Chang, F.-J. Fusing Stacked Autoencoder and Long Short-Term Memory for Regional Multistep-Ahead Flood Inundation Forecasts. J. Hydrol. 2021, 598, 126371. [Google Scholar] [CrossRef]
- Huang, P.-C. An Effective Alternative for Predicting Coastal Floodplain Inundation by Considering Rainfall, Storm Surge, and Downstream Topographic Characteristics. J. Hydrol. 2022, 607, 127544. [Google Scholar] [CrossRef]
- Botunac, I.; Bosna, J.; Matetić, M. Optimization of Traditional Stock Market Strategies Using the LSTM Hybrid Approach. Information 2024, 15, 136. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, B. Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting. Math. Probl. Eng. 2018, 2018, 2470171. [Google Scholar] [CrossRef]
- Hinchi, A.Z.; Tkiouat, M. Rolling Element Bearing Remaining Useful Life Estimation Based on a Convolutional Long-Short-Term Memory Network. Procedia Comput. Sci. 2018, 127, 123–132. [Google Scholar] [CrossRef]
- Jiang, S.; Zheng, Y.; Wang, C.; Babovic, V. Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments. Water Resour. Res. 2022, 58, e2021WR030185. [Google Scholar] [CrossRef]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef]
- Le, X.-H.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef]
- Frame, J.M.; Kratzert, F.; Klotz, D.; Gauch, M.; Shalev, G.; Gilon, O.; Qualls, L.M.; Gupta, H.V.; Nearing, G.S. Deep Learning Rainfall–Runoff Predictions of Extreme Events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. [Google Scholar] [CrossRef]
- Kang, J.; Wang, H.; Yuan, F.; Wang, Z.; Huang, J.; Qiu, T. Prediction of Precipitation Based on Recurrent Neural Networks in Jingdezhen, Jiangxi Province, China. Atmosphere 2020, 11, 246. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C. Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Gu, H.; Xu, Y.-P.; Ma, D.; Xie, J.; Liu, L.; Bai, Z. A Surrogate Model for the Variable Infiltration Capacity Model Using Deep Learning Artificial Neural Network. J. Hydrol. 2020, 588, 125019. [Google Scholar] [CrossRef]
- Arsenault, R.; Martel, J.-L.; Brunet, F.; Brissette, F.; Mai, J. Continuous Streamflow Prediction in Ungauged Basins: Long Short-Term Memory Neural Networks Clearly Outperform Traditional Hydrological Models. Hydrol. Earth Syst. Sci. 2023, 27, 139–157. [Google Scholar] [CrossRef]
- Lu, D.; Konapala, G.; Painter, S.L.; Kao, S.-C.; Gangrade, S. Streamflow Simulation in Data-Scarce Basins Using Bayesian and Physics-Informed Machine Learning Models. J. Hydrometeorol. 2021, 22, 1421–1438. [Google Scholar] [CrossRef]
- Koutsovili, E.-I.; Tzoraki, O.; Theodossiou, N.; Tsekouras, G.E. Early Flood Monitoring and Forecasting System Using a Hybrid Machine Learning-Based Approach. ISPRS Int. J. Geo-Inf. 2023, 12, 464. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, J.; Lei, P.; Li, Y. A Novel Multi-Step Ahead Forecasting Model for Flood Based on Time Residual LSTM. J. Hydrol. 2023, 620, 129521. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on Particle Swarm Optimization in LSTM Neural Networks for Rainfall-Runoff Simulation. J. Hydrol. 2022, 608, 127553. [Google Scholar] [CrossRef]
- Forghanparast, F.; Mohammadi, G. Using Deep Learning Algorithms for Intermittent Streamflow Prediction in the Headwaters of the Colorado River, Texas. Water 2022, 14, 2972. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, M.; Nedjah, N.; Xu, D.; Ye, F. A Hydrological Data Prediction Model Based on LSTM with Attention Mechanism. Water 2023, 15, 670. [Google Scholar] [CrossRef]
- Xiang, Z.; Yan, J.; Demir, I. A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Thé, J.V.G.; Yang, S.X.; Gharabaghi, B. The Discharge Forecasting of Multiple Monitoring Station for Humber River by Hybrid LSTM Models. Water 2022, 14, 1794. [Google Scholar] [CrossRef]
- Hu, R.; Fang, F.; Pain, C.C.; Navon, I.M. Rapid Spatio-Temporal Flood Prediction and Uncertainty Quantification Using a Deep Learning Method. J. Hydrol. 2019, 575, 911–920. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, X.; Yu, H.; Chen, Z.; Du, W.; Chen, N. Incorporating Spatial Autocorrelation into Deformable ConvLSTM for Hourly Precipitation Forecasting. Comput. Geosci. 2024, 184, 105536. [Google Scholar] [CrossRef]
- Cui, Z.; Zhou, Y.; Guo, S.; Wang, J.; Xu, C.-Y. Effective Improvement of Multi-Step-Ahead Flood Forecasting Accuracy through Encoder-Decoder with an Exogenous Input Structure. J. Hydrol. 2022, 609, 127764. [Google Scholar] [CrossRef]
- Kao, I.-F.; Zhou, Y.; Chang, L.-C.; Chang, F.-J. Exploring a Long Short-Term Memory Based Encoder-Decoder Framework for Multi-Step-Ahead Flood Forecasting. J. Hydrol. 2020, 583, 124631. [Google Scholar] [CrossRef]
- Han, Y.; Sun, K.; Yan, J.; Dong, C. Surface Temperature Prediction of East China Sea Based on Variational Mode Decomposition-Long-Short Term Memory-Broad Learning System Hybrid Model. Laser Optoelectron. Prog. 2023, 60, 0701001. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM Model for Sea Surface Temperature Prediction. IEEE Geosci. Remote Sens. Lett. 2018, 15, 207–211. [Google Scholar] [CrossRef]
- Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrol. Earth Syst. Sci. 2021, 25, 2045–2062. [Google Scholar] [CrossRef]
- Zhang, K.; Geng, X.; Yan, X.-H. Prediction of 3-D Ocean Temperature by Multilayer Convolutional LSTM. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1303–1307. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, S.; Padmalal, D.; Roy, A. Streamflow Prediction Using Machine Learning Models in Selected Rivers of Southern India. Int. J. River Basin Manag. 2023, 1–27. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–Runoff Modelling Using Long Short-Term Memory (LSTM) Networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, C.; Li, W.; Tang, Y.; Yang, F.; Xu, Y.; Quan, L.; Hu, C. Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model. Water Resour. Manag. 2023, 37, 5171–5187. [Google Scholar] [CrossRef]
- Lees, T.; Buechel, M.; Anderson, B.; Slater, L.; Reece, S.; Coxon, G.; Dadson, S.J. Benchmarking Data-Driven Rainfall–Runoff Models in Great Britain: A Comparison of Long Short-Term Memory (LSTM)-Based Models with Four Lumped Conceptual Models. Hydrol. Earth Syst. Sci. 2021, 25, 5517–5534. [Google Scholar] [CrossRef]
- Vuong, P.H.; Phu, L.H.; Van Nguyen, T.H.; Duy, L.N.; Bao, P.T.; Trinh, T.D. A Bibliometric Literature Review of Stock Price Forecasting: From Statistical Model to Deep Learning Approach. Sci. Prog. 2024, 107, 00368504241236557. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Wang, H.; Zhang, D. Degradation Evaluation of Slewing Bearing Using HMM and Improved GRU. Measurement 2019, 146, 385–395. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent Progress on Generative Adversarial Networks (GANs): A Survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Alipour-Fard, T.; Arefi, H. Structure Aware Generative Adversarial Networks for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5424–5438. [Google Scholar] [CrossRef]
- Xie, H.; Randall, M.; Chau, K. Green Roof Hydrological Modelling With GRU and LSTM Networks. Water Resour. Manag. 2022, 36, 1107–1122. [Google Scholar] [CrossRef]
- Sadeghi Tabas, S.; Samadi, S. Variational Bayesian Dropout with a Gaussian Prior for Recurrent Neural Networks Application in Rainfall–Runoff Modeling. Environ. Res. Lett. 2022, 17, 065012. [Google Scholar] [CrossRef]
- Cho, M.; Kim, C.; Jung, K.; Jung, H. Water Level Prediction Model Applying a Long Short-Term Memory (LSTM)–Gated Recurrent Unit (GRU) Method for Flood Prediction. Water 2022, 14, 2221. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Flood Forecasting Using Hybrid LSTM and GRU Models with Lag Time Preprocessing. Water 2023, 15, 3982. [Google Scholar] [CrossRef]
- Kilinc, H.C.; Yurtsever, A. Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series. Sustainability 2022, 14, 3352. [Google Scholar] [CrossRef]
- Chhetri, M.; Kumar, S.; Pratim Roy, P.; Kim, B.-G. Deep BLSTM-GRU Model for Monthly Rainfall Prediction: A Case Study of Simtokha, Bhutan. Remote Sens. 2020, 12, 3174. [Google Scholar] [CrossRef]
- Guo, W.-D.; Chen, W.-B.; Chang, C.-H. Prediction of Hourly Inflow for Reservoirs at Mountain Catchments Using Residual Error Data and Multiple-Ahead Correction Technique. Hydrol. Res. 2023, 54, 1072–1093. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [Google Scholar] [CrossRef]
- Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Using a Novel Forecasting Method. Appl. Energy 2021, 299, 117291. [Google Scholar] [CrossRef]
- Onan, A. Bidirectional Convolutional Recurrent Neural Network Architecture with Group-Wise Enhancement Mechanism for Text Sentiment Classification. J. King Saud. Univ. Comput. Inf. Sci. 2022, 34, 2098–2117. [Google Scholar] [CrossRef]
- Stateczny, A.; Narahari, S.C.; Vurubindi, P.; Guptha, N.S.; Srinivas, K. Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier. Remote Sens. 2023, 15, 2015. [Google Scholar] [CrossRef]
- Li, X.; Song, G.; Du, Z. Hybrid Model of Generative Adversarial Network and Takagi-Sugeno for Multidimensional Incomplete Hydrological Big Data Prediction. Concurr. Comput. Pract. Exp. 2021, 33, e5713. [Google Scholar] [CrossRef]
- Hofmann, J.; Schüttrumpf, H. floodGAN: Using Deep Adversarial Learning to Predict Pluvial Flooding in Real Time. Water 2021, 13, 2255. [Google Scholar] [CrossRef]
- do Lago, C.A.F.; Giacomoni, M.H.; Bentivoglio, R.; Taormina, R.; Gomes, M.N.; Mendiondo, E.M. Generalizing Rapid Flood Predictions to Unseen Urban Catchments with Conditional Generative Adversarial Networks. J. Hydrol. 2023, 618, 129276. [Google Scholar] [CrossRef]
- Laloy, E.; Hérault, R.; Jacques, D.; Linde, N. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network. Water Resour. Res. 2018, 54, 381–406. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mishra, A.K. Deep Learning in Hydrology and Water Resources Disciplines: Concepts, Methods, Applications, and Research Directions. J. Hydrol. 2024, 628, 130458. [Google Scholar] [CrossRef]
- Ren, J.; Ren, B.; Zhang, Q.; Zheng, X. A Novel Hybrid Extreme Learning Machine Approach Improved by K Nearest Neighbor Method and Fireworks Algorithm for Flood Forecasting in Medium and Small Watershed of Loess Region. Water 2019, 11, 1848. [Google Scholar] [CrossRef]
- Zhang, E. Investigating Front Variations of Greenland Glaciers Using Multi-Temporal Remote Sensing Images and Deep Learning. Ph.D. Thesis, Hong Kong University of Science and Technology (Hong Kong), Hong Kong, China, 2020. [Google Scholar]
- Zhou, Y.; Wu, Z.; Jiang, M.; Xu, H.; Yan, D.; Wang, H.; He, C.; Zhang, X. Real-Time Prediction and Ponding Process Early Warning Method at Urban Flood Points Based on Different Deep Learning Methods. J. Flood Risk Manag. 2024, 17, e12964. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Nguyen, Q.-H.; Nguyen, X.L.; Pham, V.D.; Nguyen, H.D.; Pham, V.-M. Verification of Novel Integrations of Swarm Intelligence Algorithms into Deep Learning Neural Network for Flood Susceptibility Mapping. J. Hydrol. 2020, 581, 124379. [Google Scholar] [CrossRef]
- Chew, A.W.Z.; He, R.; Zhang, L. Multiscale Homogenized Predictive Modelling of Flooding Surface in Urban Cities Using Physics-Induced Deep AI with UPC. J. Clean. Prod. 2022, 363, 132455. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Y.; Shu, K.; Wan, D.; Yu, Y.; Zhou, X.; Liu, H. Joint Spatial and Temporal Modeling for Hydrological Prediction. IEEE Access 2020, 8, 78492–78503. [Google Scholar] [CrossRef]
- Wang, W.; Yan, H.; Lu, X.; He, Y.; Liu, T.; Li, W.; Li, P.; Xu, F. Drainage Pattern Recognition Method Considering Local Basin Shape Based on Graph Neural Network. Int. J. Digit. Earth 2023, 16, 593–619. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Deep Learning Models for Solar Irradiance Forecasting: A Comprehensive Review. J. Clean. Prod. 2021, 318, 128566. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent Neural Networks for Accurate RSSI Indoor Localization. IEEE Internet Things J. 2019, 6, 10639–10651. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, J.; Zhou, Y.; Lv, N.; Liang, X.; Wan, S. An Edge Intelligence Empowered Flooding Process Prediction Using Internet of Things in Smart City. J. Parallel Distrib. Comput. 2022, 165, 66–78. [Google Scholar] [CrossRef]
- Zulqarnain, M.; Ghazali, R.; Aamir, M.; Hassim, Y.M.M. An Efficient Two-State GRU Based on Feature Attention Mechanism for Sentiment Analysis. Multimed. Tools Appl. 2024, 83, 3085–3110. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, A.; Wang, F.; Yang, Y.; Zhang, X.; Wang, H.; Dai, H.; Qi, L.; Ma, R. An Attention-Based Category-Aware GRU Model for the next POI Recommendation. Int. J. Intell. Syst. 2021, 36, 3174–3189. [Google Scholar] [CrossRef]
- Ming, W.; Guo, X.; Xu, Y.; Zhang, G.; Jiang, Z.; Li, Y.; Li, X. Progress in Non-Traditional Machining of Amorphous Alloys. Ceram. Int. 2023, 49, 1585–1604. [Google Scholar] [CrossRef]
- Ming, W.; Zhang, Z.; Wang, S.; Zhang, Y.; Shen, F.; Zhang, G. Comparative Study of Energy Efficiency and Environmental Impact in Magnetic Field Assisted and Conventional Electrical Discharge Machining. J. Clean. Prod. 2019, 214, 12–28. [Google Scholar] [CrossRef]
- Ming, W.; Guo, X.; Zhang, G.; Hu, S.; Liu, Z.; Xie, Z.; Zhang, S.; Duan, L. Optimization of Process Parameters and Performance for Machining Inconel 718 in Renewable Dielectrics. Alex. Eng. J. 2023, 79, 164–179. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; He, X.; Ming, W. A Comprehensive Review of Deep Learning-Based PCB Defect Detection. IEEE Access 2023, 11, 139017–139038. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Hu, S.; Wang, H.; Zhang, Y.; Ming, W. Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic Industries. Sensors 2023, 23, 8780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ming, W.; Zhang, Y.; Yin, L.; Xue, T.; Yu, H.; Chen, Z.; Liao, D.; Zhang, G. Analyzing Sustainable Performance on High-Precision Molding Process of 3D Ultra-Thin Glass for Smart Phone. J. Clean. Prod. 2020, 255, 120196. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C. Software Reliability Prediction Using a Deep Learning Model Based on the RNN Encoder–Decoder. Reliab. Eng. Syst. Saf. 2018, 170, 73–82. [Google Scholar] [CrossRef]
- Forootan, M.M.; Larki, I.; Zahedi, R.; Ahmadi, A. Machine Learning and Deep Learning in Energy Systems: A Review. Sustainability 2022, 14, 4832. [Google Scholar] [CrossRef]
- Jin, L.W.; Zhong, Z.Y.; Yang, Z.; Yang, W.X.; Sun, J. Applications of Deep Learning for Handwritten Chinese Character Recognition:A Review. Acta Autom. Sin. 2016, 42, 1125–1141. [Google Scholar] [CrossRef]
- Jiang, F.; Fu, Y.; Gupta, B.B.; Liang, Y.; Rho, S.; Lou, F.; Meng, F.; Tian, Z. Deep Learning Based Multi-Channel Intelligent Attack Detection for Data Security. IEEE Trans. Sustain. Comput. 2020, 5, 204–212. [Google Scholar] [CrossRef]
- Lu, N.; Wu, Y.; Feng, L.; Song, J. Deep Learning for Fall Detection: Three-Dimensional CNN Combined With LSTM on Video Kinematic Data. IEEE J. Biomed. Health Inform. 2019, 23, 314–323. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Yu, M.; Li, C.; Song, D.; Ren, P.; Wu, J. MesoGRU: Deep Learning Framework for Mesoscale Eddy Trajectory Prediction. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Liao, S.-M.; Liu, M.-B. Dynamic Prediction of Moving Trajectory in Pipe Jacking: GRU-Based Deep Learning Framework. Front. Struct. Civ. Eng. 2023, 17, 994–1010. [Google Scholar] [CrossRef]
- Konapala, G.; Kao, S.-C.; Painter, S.L.; Lu, D. Machine Learning Assisted Hybrid Models Can Improve Streamflow Simulation in Diverse Catchments across the Conterminous US. Environ. Res. Lett. 2020, 15, 104022. [Google Scholar] [CrossRef]
- Wang, Y.-H. Bridging the Gap Between the Physical-Conceptual Approach and Machine Learning for Modeling Hydrological Systems. Doctoral Dissertation, The University of Arizona, Tucson, AZ, USA, 2023. [Google Scholar]
- Townshend, R.J.L.; Eismann, S.; Watkins, A.M.; Rangan, R.; Karelina, M.; Das, R.; Dror, R.O. Geometric Deep Learning of RNA Structure. Science 2021, 373, 1047–1051. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef]
- Fang, T.; Chen, Y.; Tan, H.; Cao, J.; Liao, J.; Huang, L. Flood Risk Evaluation in the Middle Reaches of the Yangtze River Based on Eigenvector Spatial Filtering Poisson Regression. Water 2019, 11, 1969. [Google Scholar] [CrossRef]
- Darand, M.; Dostkamyan, M.; Rehmani, M.I.A. Spatial Autocorrelation Analysis of Extreme Precipitation in Iran. Russ. Meteorol. Hydrol. 2017, 42, 415–424. [Google Scholar] [CrossRef]
- Zhuang, Q.; Liu, S.; Zhou, Z. Spatial Heterogeneity Analysis of Short-Duration Extreme Rainfall Events in Megacities in China. Water 2020, 12, 3364. [Google Scholar] [CrossRef]
- Kumar, R.; Livneh, B.; Samaniego, L. Toward Computationally Efficient Large-Scale Hydrologic Predictions with a Multiscale Regionalization Scheme. Water Resour. Res. 2013, 49, 5700–5714. [Google Scholar] [CrossRef]
Method | Minor Category | Authors | Problem and Difficulty Level | Improvement, Prediction Accuracy, and Computational Costs | Remarks |
---|---|---|---|---|---|
CNN | Learning-based CNN | Sepahvand et al. [40] | Hydrological infiltration modeling; medium | Applied innovation; improved accuracy over SVR; acceptable | Increased training time. |
YOLOv2 framework | Han et al. [41] | Flood management and flood warning; medium | Applied innovation; accuracy exceeded 90%; lengthy training | To be tested in practical engineering. | |
CNN-LSTM | Windheuser et al. [43] | Flood stage prediction; hard | Integrated innovation; accuracy > 80%; lengthy training | Six-hour forecast accuracy needs improvement. | |
Basic CNN | Aderyani et al. [46] | Rainfall forecasting; medium | Applied innovation; R2 not exceeding 0.7; acceptable | Prediction accuracy needs improvement. | |
RNN | Dynamic RNN | Coulibaly et al. [49] | Water resource prediction; medium | Local structural improvements; better than MARS; acceptable | Algorithmic advances beat traditional models. |
Basic RNN | Kim et al. [53] | Dam inflow prediction; medium | Applied innovation; prediction differences < 6%; acceptable | High-precision models enhance dam safety. | |
BiRNN | Karbasi et al. [55] | Weekly reference evapotranspiration; medium | Local structural improvements; average R = 0.90; acceptable | Improves the CNN method and boosts hydrological forecasts. | |
Basic RNN/BiRNN | Ayele et al. [56] | Dam inflow prediction; medium | Local structural improvements; close to GRU; acceptable | Accurate long-term predictions. | |
RNN-RandExtreme | Wang et al. [57] | Extreme precipitation downscaling; hard | Integrated innovation; improved by 28.32%; acceptable | Enhances hydrological forecasting. | |
RNN with geomorphological factors | Huang [59] | Flooding process; hard | Integrated innovation; MRE: 0.338 to 0.055; acceptable | Includes the coupling of geomorphological factors. |
Method | Minor Category | Authors | Problem and Difficulty Level | Improvement, Prediction Accuracy, and Computational Costs | Remarks |
---|---|---|---|---|---|
Basic LSTM | LSTM | Hu et al. [64] | Rainfall–runoff; medium | Applied innovation; R2 exceeding 0.9; acceptable | An example of early LSTM use in hydrological prediction. |
Optimized LSTM | Kang et al. [68] | Precipitation; medium | Applied innovation; outperforms traditional statistics and ML; acceptable | Enhances rural precipitation predictions with sparse data. | |
LSTM with SMAP | Fang and Shen [69] | Near-real-time forecasting of soil moisture; hard | Integrated innovation; outperforms LSTM sans SMAP; acceptable | Adding key hydrological data enhances the LSTM model. | |
SOM + K-means + LSTM | Gu et al. [70] | VIC; very hard | Integrated innovation; close to the VIC model; acceptable | Saved > 97% computation time. | |
Bayesian LSTM | Lu et al. [72] | Streamflow simulation; medium | Integrated innovation; desired performance; lengthy training | Enhances the fusion model’s interpretability and accuracy. | |
Vanilla LSTM | Koutsovili et al. [73] | Early flood monitoring; hard | Integrated innovation; acceptable level; lengthy training | ||
Improved LSTM | ResLSTM | Zou et al. [74] | Flood probability; medium | Local structural improvements; surpasses original LSTM and GRU; acceptable | Residual LSTM integration mitigates gradient issues. |
SA-LSTM | Forghanparast et al. [76] | Intermittent runoff prediction; medium | Local structural improvements; achieved the best performance among the four models studied; acceptable | Model uses attention mechanisms for accuracy. | |
LSTM-seq2seq | Dai et al. [77] | Short-term water level prediction; medium | Local structural improvements; NSE = 0.83; acceptable | ||
LSTM-EDE | Cui et al. [82] | Multi-step-ahead flood forecasting; hard | Local structural improvements; more suitable for long-term flood forecasting; acceptable | Model performance degrades with longer prediction periods. | |
VMD-LSTM-BLS | Han et al. [84] | SST prediction; medium | Local structural improvements; RMSE reduction: max 42.75%, min 19.15%; acceptable | Signal decomposition integration enhances LSTM SST accuracy. | |
Multi-layer convolutional LSTM | Zhang et al. [87] | SST prediction; medium | Local structural improvements; predicted data are generally accurate; acceptable | Links temperature time series with spatial seawater data. |
Method | Minor Category | Authors | Problem and Difficulty Level | Improvement, Prediction Accuracy, and Computational Costs | Remarks |
---|---|---|---|---|---|
GRU | Basic GRU | Zou et al. [74] | Flood probability; medium | Local structural improvements; acceptable; acceptable | Easily implemented; lowers threshold. |
Basic GRU | Xie et al. [96] | Hydrological simulation of green roofs; medium | Applied innovation; higher overall prediction accuracy; acceptable | Finds optimal parameters for high accuracy. | |
GRU+ MC-dropout | Tabas and Samadi et al. [97] | Streamflow simulation; hard | Local structural improvements; acceptable; acceptable | Combining models with noise reduces uncertainty. | |
GRU + CGBR | Guo et al. [102] | Hourly inflow for reservoirs at mountain catchments; hard | Integrated innovation; acceptable; acceptable | Model performance depends on the dataset’s quality. | |
Others | GAN | Li et al. [107] | Rainfall–runoff prediction; hard | Integrated innovation; acceptable; acceptable | GANs generate data better than random forest models. |
GAN | Laloy et al. [110] | Groundwater modeling; very hard | Applied innovation; acceptable; acceptable | Spatial GANs require fewer training images. | |
ResNet | Zhang [113] | Changes in Greenland glaciers; hard | Integrated innovation; acceptable; medium | Assess generalizability and robustness for wider use. |
Methods | Difficulty of Application | Computing Time | Replicability | Interpretability |
---|---|---|---|---|
Physical models | Hard | Long | Very hard | Yes |
Traditional ML | Middle | Short | Hard | Partially |
DL | Easy | Acceptable level | Acceptable level | No |
Methods | Number of Appearances in the Literature | Difficulty of Application | Accuracy | Complexity |
---|---|---|---|---|
CNN | Less | Easy | Acceptable level | Acceptable level |
RNN | Less | Middle | Relatively satisfactory | Simple |
LSTM | More | Middle | Relatively perfect | Middle |
GRU | Less | Middle | Relatively satisfactory | Simple |
ResNet | Much less | Easy | --- | Middle |
GAN | Much less | Hard | --- | Huge |
GNN | Much less | Hard | --- | Middle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, H.; Bai, M.; Xu, Y.; Dong, S.; Rao, H.; Ming, W. A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning. Water 2024, 16, 1407. https://doi.org/10.3390/w16101407
Zhao X, Wang H, Bai M, Xu Y, Dong S, Rao H, Ming W. A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning. Water. 2024; 16(10):1407. https://doi.org/10.3390/w16101407
Chicago/Turabian StyleZhao, Xinfeng, Hongyan Wang, Mingyu Bai, Yingjie Xu, Shengwen Dong, Hui Rao, and Wuyi Ming. 2024. "A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning" Water 16, no. 10: 1407. https://doi.org/10.3390/w16101407
APA StyleZhao, X., Wang, H., Bai, M., Xu, Y., Dong, S., Rao, H., & Ming, W. (2024). A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning. Water, 16(10), 1407. https://doi.org/10.3390/w16101407