Behavior of PCDD/Fs and PCBs from Wastewater Treatment Plants during Sewage Sludge Composting: Study of Semi-Anaerobic Conditions and Different Stages of the Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge and Initial Mixtures
2.2. Laboratory Runs
2.3. Sample Analysis
2.4. QA/QC
3. Results
3.1. Degradation of Material
3.2. PCDD/F Formation
3.3. PCB Formation
3.4. Total Levels and Toxicity due to PCDD/Fs and PCBs
4. Discussion
4.1. PCDD/F Formation
4.2. PCB Formation
4.3. Toxicity due to PCDD/Fs and PCBs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eurostat Water Statistics. Sewage Sludge Production and Disposal. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ww_spd__custom_8221620/default/line?lang=en (accessed on 30 October 2023).
- European Commission Commision Staff Working Document Evaluation. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52023SC0157 (accessed on 30 October 2023).
- Huygens, D.; Garcia-Gutierrez, P.; Orveillon, G.; Schillaci, C.; Delre, A.; Orgiazzi, A.; Wojda, P.; Tonini, D.; Jones, A.; Pistocchi, A. Screening Risk Assessment of Organic Pollutants and Environmental Impacts from Sewage Sludge Management; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-57322-7. [Google Scholar]
- Rigby, H.; Dowding, A.; Fernandes, A.; Humphries, D.; Petch, R.G.; Reynolds, C.K.; Rose, M.; Smith, S.R. Transfer of Polychlorinated, Polybrominated and Mixed-Halogenated Dioxins, Furans and Biphenyls, Polychlorinated Naphthalenes and Alkanes, Polycyclic Aromatic Hydrocarbons and Chlorobenzenes to the Milk of Dairy Cattle from Controlled Ingestion of Industrial and Municipal Bioresources Recycled to Agricultural Land. Sci. Total Environ. 2023, 886, 163546. [Google Scholar] [CrossRef] [PubMed]
- EUR-Lex Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31986L0278 (accessed on 30 October 2023).
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Miino, M.C.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef]
- EUR-Lex Directive EU/2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0851 (accessed on 30 October 2023).
- EUR-Lex Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0098 (accessed on 30 October 2023).
- Domini, M.; Bertanza, G.; Vahidzadeh, R.; Pedrazzani, R. Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy. Appl. Sci. 2022, 12, 10391. [Google Scholar] [CrossRef]
- Bueno Márquez, P.; Díaz Blanco, M.J.; Cabrera, F. Factores Que Afectan al Proceso de Compostaje. In Compostaje; Moreno Casco, J., Moral Herrero, R., Eds.; Mundi-Prensa: Madrid, Spain, 2008; pp. 93–109. ISBN 978-84-8476-346-8. [Google Scholar]
- Brändli, R.C.; Kupper, T.; Bucheli, T.D.; Zennegg, M.; Huber, S.; Ortelli, D.; Müller, J.; Schaffner, C.; Iozza, S.; Schmid, P.; et al. Organic Pollutants in Compost and Digestate: Part 2. Polychlorinated Dibenzo-p-Dioxins, and -Furans, Dioxin-like Polychlorinated Biphenyls, Brominated Flame Retardants, Perfluorinated Alkyl Substances, Pesticides, and Other Compounds. J. Environ. Monit. 2007, 9, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Zambello, E. Pharmaceuticals and Personal Care Products in Untreated and Treated Sewage Sludge: Occurrence and Environmental Risk in the Case of Application on Soil—A Critical Review. Sci. Total Environ. 2015, 538, 750–767. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Wang, T.; Niu, M.; Chen, X.; Liu, C.; Wang, Y.; Chen, T. Biodegradation of Nonylphenol during Aerobic Composting of Sewage Sludge under Two Intermittent Aeration Treatments in a Full-Scale Plant. Environ. Pollut. 2018, 238, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Hamann, R.; Weber, H.; Disse, G.; Haupt, H.J. “Determination of the PCDD/F Levels in Large-Scale Sewage Sludge Composting. Organohalogen Compd. 1997, 32, 400–402. [Google Scholar]
- Lazzari, L.; Sperni, L.; Salizzato, M.; Pavoni, B. Gas Chromatographic Determination of Organic Micropollutants in Samples of Sewage Sludge and Compost: Behaviour of PCB and PAH during Composting. Chemosphere 1999, 38, 1925–1935. [Google Scholar] [CrossRef]
- Stockholm Convention the 12 Initial POPs under the Stockholm Convention. Available online: https://chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx (accessed on 3 November 2023).
- UNEP Chemicals Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/32443/STIQDFR.pdf?sequence=1&isAllowed=y (accessed on 31 October 2023).
- Muñoz, M.; Gomez-Rico, M.F.; Font, R. PCDD/F Formation from Chlorophenols by Lignin and Manganese Peroxidases. Chemosphere 2014, 110, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Malloy, T.A.; Goldfarb, T.D.; Surico, M.T.J. PCDDs, PCDFs, PCBs, Chlorophenols (CPs) and Chlorobenzenes (CBzs) in Samples from Various Types of Composting Facilities in the United States. Chemosphere 1993, 27, 325–334. [Google Scholar] [CrossRef]
- Weber, H.; Hamann, R.; Disse, G.; Haupt, H.J. Influence of Different Treatment Methods for Sewage Sludge on the Levels of Chlorinated Dibenzodioxins and Dibenzofurans. Organohalogen Compd. 1997, 32, 394–399. [Google Scholar]
- Öberg, L.G.; Wagman, N.; Andersson, R.; Rappe, C. De Novo Formation of PCDD/Fs in Compost and Sewage Sludge—A Status Report. Organohalogen Compd. 1993, 11, 297–302. [Google Scholar]
- Lü, H.; Chen, X.H.; Mo, C.H.; Huang, Y.H.; He, M.Y.; Li, Y.W.; Feng, N.X.; Katsoyiannis, A.; Cai, Q.Y. Occurrence and Dissipation Mechanism of Organic Pollutants during the Composting of Sewage Sludge: A Critical Review. Bioresour. Technol. 2021, 328, 124847. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Gomez-Rico, M.F.; Font, R. Use of Thermogravimetry for Single Characterisation of Samples of the Composting Process from Sewage Sludge. J. Anal. Appl. Pyrolysis 2013, 103, 261–267. [Google Scholar] [CrossRef]
- Muñoz, M.; Garrido, M.A.; Gomez-Rico, M.F.; Font, R. PCDD/F Determination in Sewage Sludge Composting. Influence of Aeration and the Presence of PCP. Sci. Total Environ. 2018, 616–617, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Harrad, S.J.; Malloy, T.A.; Khan, M.A.; Goldfarb, T.D. Levels and Sources of PCDDs, PCDFs, Chlorophenols (CPs) and Chlorobenzenes (CBzs) in Composts from a Municipal Yard Waste Composting Facility. Chemosphere 1991, 23, 181–191. [Google Scholar] [CrossRef]
- Ng, Q.Y.C.; Chan, A.H.M.; Ma, S.W.Y. A Study of Polychlorinated Dibenzo-p-Dioxins/Furans (PCDD/Fs) and Polychlorinated Biphenyls (PCBs) in the Livestock Waste Compost of Hong Kong, PR China. Mar. Pollut. Bull. 2008, 57, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Gomez-Rico, M.F.; Font, R. PCDD/F and Dioxin-like PCB Concentrations during Municipal Solid Waste Biomethanation and Subsequent Composting. Chemosphere 2014, 98, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Ngo, H.H.; Lin, C.; Vu, C.T.; Kaewlaoyoong, A.; Boonsong, T.; Tran, H.T.; Bui, X.T.; Vo, T.D.H.; Chen, J.R. Aerobic Co-Composting Degradation of Highly PCDD/F-Contaminated Field Soil. A Study of Bacterial Community. Sci. Total Environ. 2019, 660, 595–602. [Google Scholar] [CrossRef]
- Tran, H.T.; Lin, C.; Hoang, H.G.; Nguyen, M.T.; Kaewlaoyoong, A.; Cheruiyot, N.K.; Bui, X.T.; Vu, C.T. Biodegradation of Dioxin-Contaminated Soil via Composting: Identification and Phylogenetic Relationship of Bacterial Communities. Environ. Technol. Innov. 2020, 19, 101023. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wu, J.H.; Lin, S.C.; Chang, J.E. Bioremediation of Polychlorinated-p-Dioxins/Dibenzofurans Contaminated Soil Using Simulated Compost-Amended Landfill Reactors under Hypoxic Conditions. J. Hazard. Mater. 2016, 312, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Narihiro, T.; Kaiya, S.; Futamata, H.; Hiraishi, A. Removal of Polychlorinated Dioxins by Semi-Aerobic Fed-Batch Composting with Biostimulation of “Dehalococcoides”. J. Biosci. Bioeng. 2010, 109, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Zhang, Z.F.; Kaewlaoyoong, A.; Huang, J.T.; Cheruiyot, N.K.; Lin, C.; Huang, H.C. Improved Bioremediation of PCDD/Fs Contaminated Soil by Mycelium-Free Liquids Induced by Agro-Industrial Residues. Bioresour. Technol. Rep. 2023, 22, 101435. [Google Scholar] [CrossRef]
- Kaewlaoyoong, A.; Cheng, C.Y.; Lin, C.; Chen, J.R.; Huang, W.Y.; Sriprom, P. White Rot Fungus Pleurotus Pulmonarius Enhanced Bioremediation of Highly PCDD/F-Contaminated Field Soil via Solid State Fermentation. Sci. Total Environ. 2020, 738, 139670. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.J. Mycoremediation (Bioremediation with Fungi)—Growing Mushrooms to Clean the Earth. Chem. Speciat. Bioavailab. 2014, 26, 196–198. [Google Scholar] [CrossRef]
- EPSAR—Saneamiento de Aguas. Available online: https://www.epsar.gva.es/ (accessed on 17 May 2024).
- Mardones, C.; von Baer, D.; Hidalgo, A.; Contreras, A.; Sepúlveda, C. Determination of Pentachlorophenol and Tribromophenol in Sawdust by Ultrasound-Assisted Extraction and MEKC. J. Sep. Sci. 2008, 31, 1124–1129. [Google Scholar] [CrossRef]
- US EPA Method 1613. Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. 1994. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/20002GR6.PDF?Dockey=20002GR6.PDF (accessed on 23 May 2024).
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Park, H.J.; Hao, X.; Lee, S.I.; Jeon, B.J.; Kwak, J.H.; Choi, W.J. Nitrogen, Carbon, and Dry Matter Losses during Composting of Livestock Manure with Two Bulking Agents as Affected by Co-Amendments of Phosphogypsum and Zeolite. Ecol. Eng. 2017, 102, 280–290. [Google Scholar] [CrossRef]
- Rullan, R.; Montana, M.J.; Marti, R.; Broto, F.; Comellas, L.; Rodríguez-Larena, M.C.; Díaz-Ferrero, J. Comparison of OCDD/F Levels in Sewage Sludge before and after Composting and Thermal Drying Processes. Organohalogen Compd. 2003, 63, 98–101. [Google Scholar]
- Lazzari, L.; Sperni, L.; Bertin, P.; Pavoni, B. Correlation between Inorganic (Heavy Metals) and Organic (PCBs and PAHs) Micropollutant Concentrations during Sewage Sludge Composting Processes. Chemosphere 2000, 41, 427–435. [Google Scholar] [CrossRef]
- Grossi, G.; Lichtig, J.; KrauB, P. PCDD/F, PCB and PAH content of Brazilian compost. Chemosphere 1998, 37, 2153–2160. [Google Scholar] [CrossRef]
- Gibson, R.W.; Wang, M.J.; Padgett, E.; Lopez-Real, J.M.; Beck, A.J. Impact of Drying and Composting Procedures on the Concentrations of 4-Nonylphenols, Di-(2-Ethylhexyl)Phthalate and Polychlorinated Biphenyls in Anaerobically Digested Sewage Sludge. Chemosphere 2007, 68, 1352–1358. [Google Scholar] [CrossRef]
- Berthouex, P.M.; Gan, D.R. Loss of pcbs from municipal-sludge-treated farmland. J. Environ. Eng. 1991, 117, 5–24. [Google Scholar] [CrossRef]
- UNEP Chemicals Dioxin and Furan Inventories. National and Regional Emissions of PCDD/PCDF. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/8241/-Dioxin%20and%20Furan%20Inventories_%20National%20and%20Regional%20Emissions%20of%20PCDD-PCDF-19991820.pdf (accessed on 10 November 2023).
- Beníšek, M.; Kukučka, P.; Mariani, G.; Suurkuusk, G.; Gawlik, B.M.; Locoro, G.; Giesy, J.P.; Bláha, L. Dioxins and Dioxin-like Compounds in Composts and Digestates from European Countries as Determined by the in Vitro Bioassay and Chemical Analysis. Chemosphere 2015, 122, 168–175. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Sludge R | Sludge U | Sludge UI |
---|---|---|---|
Water flow (m3/d) | 11,142 | 36,501 | 48,627 |
Population served (Inhabitant equivalent) | 86,739 | 240,216 | 285,719 |
Type of area | Rural | Urban | Urban–industrial |
SS inlet water (mg/L) | 364 | 428 | 389 |
BOD5 inlet water (mg/L) | 530 | 487 | 393 |
COD inlet water (mg/L) | 897 | 869 | 767 |
Total N inlet water (mg/L) | 98.80 | 70.25 | 78.10 |
Total P inlet water (mg/L) | 11.31 | 8.90 | 12.64 |
Water treatment | Preliminary treatment | Preliminary treatment | Preliminary treatment |
Physical–chemical treatment and primary sedimentation | Primary sedimentation | Primary sedimentation | |
Activated sludge | Activated sludge | Activated sludge | |
Phosphorus removal and secondary sedimentation | Phosphorus and nitrogen removal and secondary sedimentation | Secondary sedimentation | |
Disinfection by chlorination | Disinfection by chlorination | Disinfection by chlorination and ultraviolet light | |
Sludge treatment | Gravity and flotation thickening Lime stabilization Centrifuge dewatering | Gravity and flotation thickening Anaerobic digestion Centrifuge dewatering | Gravity and flotation thickening Anaerobic digestion Centrifuge dewatering |
Element | Content in Initial Mixture (%) | ||
---|---|---|---|
Sludge R | Sludge U | Sludge UI | |
C | 39.5 | 40.2 | 39.6 |
H | 5.4 | 5.7 | 5.4 |
N | 1.8 | 4.6 | 3.8 |
S | <0.1 | 1.0 | 0.8 |
Ca | 15.8 | 6.3 | 9.1 |
Fe | 1.3 | 2.9 | 5.0 |
Si | 1.0 | 2.3 | 2.8 |
P | 2.7 | 4.0 | 2.7 |
Al | 0.4 | 1.2 | 1.4 |
Mg | 1.0 | 1.1 | 1.1 |
Na | <0.1 | 0.5 | 0.5 |
K | <0.1 | 0.6 | 0.3 |
Ti | 0.2 | 0.3 | 0.2 |
Cl | 0.1 | <0.1 | 0.1 |
Ba | <0.1 | <0.1 | 0.1 |
Sr | <0.1 | 0.1 | 0.1 |
Zn | <0.1 | <0.1 | 0.1 |
Cu | <0.1 | <0.1 | <0.1 |
Mn | <0.1 | <0.1 | <0.1 |
Zr | <0.1 | <0.1 | <0.1 |
Ga | <0.1 | <0.1 | <0.1 |
Experiment ID | Description |
---|---|
R-PCP | Sludge from rural area, with PCP addition |
R-PCP-r | Sludge from rural area, with PCP addition, replicate |
U-PCP | Sludge from urban area, with PCP addition |
U-PCP-r | Sludge from urban area, with PCP addition, replicate |
UI-PCP | Sludge from urban–industrial area, with PCP addition |
UI-PCP-r | Sludge from urban–industrial area, with PCP addition, replicate |
Experiment ID | Ash Initial Sample (%) | Ash 40 d Sample (%) | Ash 70 d Sample (%) | Concentration Degree 40 d | Concentration Degree 70 d |
---|---|---|---|---|---|
R-PCP | 23.4 | 46.2 | 32.3 | 1.97 | 1.38 |
R-PCP-r | 23.4 | 33.7 | 35.0 | 1.44 | 1.49 |
U-PCP | 19.6 | 27.5 | 31.1 | 1.40 | 1.58 |
U-PCP-r | 19.6 | 38.2 | 26.2 | 1.95 | 1.33 |
UI-PCP | 24.7 | 38.4 | 37.9 | 1.55 | 1.53 |
UI-PCP-r | 24.7 | 30.3 | 27.2 | 1.23 | 1.10 |
ng/kg Dry Mass (Initial Samples) | ng/kg Dry Mass (70 d Samples) | ||||||||
---|---|---|---|---|---|---|---|---|---|
R-PCP | U-PCP | UI-PCP | R-PCP | R-PCP-r | U-PCP | U-PCP-r | UI-PCP | UI-PCP-r | |
2378-TCDF | 0.3 | 0.4 | 0.6 | <0.1 | <0.1 | 0.7 | 0.6 | 1.2 | 1.7 |
1237,8-PeCDF | 0.3 | 0.2 | 0.3 | 0.8 | <0.1 | <0.1 | <0.1 | 0.1 | 0.6 |
23478-PeCDF | 0.3 | 0.2 | 0.3 | 0.8 | 0.1 | <0.1 | <0.1 | <0.1 | 1.0 |
123478-HxCDF | 0.6 | 0.4 | 0.6 | 1.1 | 0.2 | 0.9 | <0.1 | <0.1 | 1.6 |
123678-HxCDF | 0.4 | 0.2 | <0.1 | 0.7 | <0.1 | 0.4 | <0.1 | 0.6 | 0.8 |
234678-HxCDF | 0.4 | <0.1 | 0.4 | 1.0 | <0.1 | 0.5 | <0.1 | <0.1 | 1.3 |
123789-HxCDF | 0.3 | 0.1 | 0.3 | 0.9 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
1234678-HpCDF | 4.5 | 3.0 | 5.9 | 8.8 | 7.4 | 11 | 11 | 20 | 16 |
1234789-HpCDF | 2.1 | 0.7 | 1.4 | 3.2 | <0.1 | 1.7 | 0.9 | <0.1 | <0.1 |
OCDF | 8.6 | 17 | 18 | 26 | 33 | 29 | 35 | 71 | 73 |
2378-TCDD | 0.1 | 0.1 | 0.1 | 0.1 | <0.1 | <0.1 | 3.9 | <0.1 | <0.1 |
12378-PeCDD | <0.1 | <0.1 | 0.1 | 1.0 | <0.1 | <0.1 | <0.1 | <0.1 | 0.9 |
123478-HxCDD | 0.5 | 0.3 | 0.2 | 1.0 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
123678-HxCDD | <0.1 | 0.1 | <0.1 | 1.6 | <0.1 | 1.3 | <0.1 | <0.1 | <0.1 |
123789-HxCDD | 0.1 | 0.1 | 0.4 | 1.0 | <0.1 | 0.3 | <0.1 | <0.1 | <0.1 |
1234678-HpCDD | 16 | 12 | 21 | 41 | 50 | 60 | 69 | 69 | 64 |
OCDD | 145 | 135 | 181 | 1914 | 2200 | 2210 | 2294 | 1949 | 2083 |
Total-PCDFs | 18 | 22 | 27 | 43 | 40 | 45 | 48 | 93 | 96 |
Total-PCDDs | 161 | 148 | 203 | 1960 | 2250 | 2272 | 2367 | 2019 | 2148 |
TOTAL PCDD/Fs | 179 | 171 | 230 | 2003 | 2291 | 2316 | 2415 | 2112 | 2244 |
PCB-77 | 38 | 26 | 186 | 63 | 80 | 80 | 83 | 524 | 470 |
PCB-81 | 4.6 | 3.4 | 19 | 1.3 | 3.3 | 2.1 | 2.3 | 22 | 18 |
PCB-126 | 11 | 4.0 | 11 | 1.8 | 4.8 | 11 | 11 | 19 | 19 |
PCB-169 | 8.7 | 7.0 | 13 | 11 | 16 | 13 | 43 | 117 | 58 |
PCB-105 | 91 | 128 | 392 | 158 | 196 | 340 | 349 | 937 | 869 |
PCB-114 | 6.7 | 9.5 | 28 | 12 | 14 | 19 | 23 | 47 | 52 |
PCB-118 | 242 | 322 | 818 | 383 | 474 | 792 | 816 | 1908 | 1779 |
PCB-123 | 20 | 28 | 82 | 20 | 31 | 42 | 44 | 104 | 124 |
PCB-156 | 54 | 154 | 196 | 108 | 139 | 294 | 327 | 444 | 428 |
PCB-157 | 13 | 17 | 32 | 16 | 21 | 40 | 47 | 61 | 57 |
PCB-167 | 31 | 65 | 130 | 53 | 69 | 162 | 180 | 273 | 250 |
PCB-189 | 12 | 20 | 28 | 22 | 20 | 59 | 65 | 102 | 100 |
Total-PCBs | 531 | 783 | 1936 | 849 | 1069 | 1853 | 1990 | 4558 | 4224 |
Toxicity PCDD/Fs + PCBs WHO2005 TEQ | 2.04 | 1.20 | 2.46 | 3.67 | 2.30 | 3.33 | 7.86 | 7.23 | 6.98 |
Toxicity PCDD/Fs I-TEQ | 0.83 | 0.69 | 1.11 | 4.19 | 2.88 | 3.38 | 7.08 | 3.10 | 4.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Rico, M.F.; Hernandez, T.; Garrido, M.A.; Font, R. Behavior of PCDD/Fs and PCBs from Wastewater Treatment Plants during Sewage Sludge Composting: Study of Semi-Anaerobic Conditions and Different Stages of the Process. Water 2024, 16, 1545. https://doi.org/10.3390/w16111545
Gomez-Rico MF, Hernandez T, Garrido MA, Font R. Behavior of PCDD/Fs and PCBs from Wastewater Treatment Plants during Sewage Sludge Composting: Study of Semi-Anaerobic Conditions and Different Stages of the Process. Water. 2024; 16(11):1545. https://doi.org/10.3390/w16111545
Chicago/Turabian StyleGomez-Rico, Maria Francisca, Teresa Hernandez, Maria Angeles Garrido, and Rafael Font. 2024. "Behavior of PCDD/Fs and PCBs from Wastewater Treatment Plants during Sewage Sludge Composting: Study of Semi-Anaerobic Conditions and Different Stages of the Process" Water 16, no. 11: 1545. https://doi.org/10.3390/w16111545
APA StyleGomez-Rico, M. F., Hernandez, T., Garrido, M. A., & Font, R. (2024). Behavior of PCDD/Fs and PCBs from Wastewater Treatment Plants during Sewage Sludge Composting: Study of Semi-Anaerobic Conditions and Different Stages of the Process. Water, 16(11), 1545. https://doi.org/10.3390/w16111545