Effect of Coal Mining Subsidence on Soil Enzyme Activity in Mining Areas with High Underground Water Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Environmental Factor Measurement
2.3.1. Soil Physicochemical Properties
2.3.2. Soil Enzyme Activity
2.4. Descriptive Statistics and Correlation Analysis
3. Results
3.1. Soil Physicochemical Property Analysis
3.2. Soil Enzyme Activity Analysis
3.3. Correlations between Soil Enzyme Activity and Physicochemical Properties
3.4. Structural Equation Modeling of Soil Enzyme Activity and Physicochemical Factors
4. Discussion
4.1. Effects of Coal Mining Subsidence on Soil Physicochemical Properties
4.2. Effects of Coal Mining Subsidence on Soil Enzyme Activity
4.3. Response of Soil Enzyme Activity to Soil Physicochemical Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sampling Area | AN mg/kg | AP mg/kg | AK mg/kg | SOM g/kg | pH | SWC % | BD g/cm3 |
---|---|---|---|---|---|---|---|
T1-SL | 35.24 ± 1.73 c | 28.15 ± 0.75 d | 237.00 ± 15.52 ab | 14.43 ± 0.65 bc | 7.49 ± 0.37 de | 16.98 ± 1.13 f | 1.3899 ± 0.0406 ef |
T1-ML | 27.71 ± 2.05 d | 17.48 ± 0.73 f | 225.33 ± 13.65 bc | 12.59 ± 0.34 d | 7.61 ± 0.07 cde | 23.77 ± 0.34 c | 1.5145 ± 0.0395 bcd |
T1-DL | 24.42 ± 0.83 de | 17.01 ± 0.48 f | 189.00 ± 8.00 de | 10.00 ± 0.34 e | 7.71 ± 0.03 cd | 26.78 ± 2.24 b | 1.5829 ± 0.0940 b |
W1-SL | 54.60 ± 1.74 a | 49.15 ± 2.13 a | 250.00 ± 3.00 a | 15.69 ± 1.35 b | 7.30 ± 0.23 e | 17.53 ± 0.46 f | 1.3441 ± 0.0403 f |
W1-ML | 46.15 ± 1.15 b | 36.33 ± 1.40 c | 248.67 ± 18.01 a | 14.21 ± 1.09 bcd | 7.91 ± 0.05 c | 18.80 ± 2.50 ef | 1.4446 ± 0.0137 de |
W1-DL | 33.15 ± 1.00 c | 27.26 ± 1.50 de | 208.67 ± 17.67 cd | 14.17 ± 0.14 bcd | 8.39 ± 0.18 b | 21.27 ± 0.33 de | 1.5204 ± 0.0164 bcd |
T2-SL | 34.86 ± 0.47 c | 27.66 ± 0.35 de | 176.00 ± 6.08 ef | 14.43 ± 1.63 bc | 7.74 ± 0.09 cd | 19.26 ± 2.36 ef | 1.4947 ± 0.0420 bcd |
T2-ML | 25.23 ± 1.11 de | 16.92 ± 0.42 f | 161.67 ± 18.72 f | 12.87 ± 0.14 cd | 7.77 ± 0.40 cd | 28.73 ± 0.57 b | 1.5380 ± 0.0408 bc |
T2-DL | 21.98 ± 1.05 e | 15.63 ± 0.63 f | 153.00 ± 7.55 f | 10.00 ± 0.38 e | 7.84 ± 0.09 cd | 31.59 ± 0.98 a | 1.7010 ± 0.0183 a |
W2-SL | 51.49 ± 2.21 a | 45.46 ± 0.41 b | 188.33 ± 8.50 de | 14.58 ± 0.26 bc | 8.38 ± 0.09 b | 21.84 ± 0.91 cd | 1.3610 ± 0.0257 ef |
W2-ML | 46.37 ± 4.58 b | 35.26 ± 0.88 c | 176.33 ± 9.71 ef | 13.53 ± 0.58 a | 8.52 ± 0.16 ab | 24.22 ± 1.52 c | 1.4843 ± 0.0671 cd |
W2-DL | 33.07 ± 2.24 c | 25.79 ± 2.53 e | 168.67 ± 11.93 ef | 13.35 ± 1.65 cd | 8.74 ± 0.05 a | 26.96 ± 0.96 b | 1.5406 ± 0.0730 bc |
References
- Ma, K.; Zhang, Y.X.; Ruan, M.Y.; Guo, J.; Chai, T.Y. Land subsidence in a coal mining area reduced soil fertility and led to soil degradation in arid and semi-arid regions. Int. J. Environ. Res. Public Health 2019, 16, 3929. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Guo, J.; Zhang, Y.X. The response of arbuscular mycorrhizal fungal communities to the soil environment of underground mining subsidence area in Northwest China. Int. J. Environ. Res. Public Health 2020, 17, 9157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.T.; Wang, J.M.; Li, B. Determining the influence factors of soil organic carbon stock in opencast coal-mine dumps based on complex network theory. Catena 2019, 173, 433–444. [Google Scholar] [CrossRef]
- Maurya, S.; Abraham, J.S.; Somasundaram, S.; Toteja, R.; Gupta, R.; Makhija, S. Indicators for assessment of soil quality: A mini-review. Environ. Monit. Assess. 2020, 192, 604. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Razavi, B.S.; Wang, W.; Zhu, Z.; Liu, S.; Wu, J.; Kuzyakov, Y.; Ge, T. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biol. Biochem. 2019, 135, 134–143. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Aparna, K.; Dotaniya, C.K.; Singh, M.; Regar, K.L. Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 569–589. [Google Scholar]
- He, C.; Li, K.; Wen, C.; Li, J.; Fan, P.; Ruan, Y.; Meng, L.; Jia, Z. Changes in Physicochemical Properties and Bacterial Communities of Tropical Soil in China under Different Soil Utilization Types. Agronomy 2023, 13, 1897. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.F.; Wang, R.J.; Li, Z.T.; Sun, S.Y.; Qin, G.H.; Song, Y.M. Effects of Vegetation Restoration on Soil Enzyme Activity in Copper and Coal Mining Areas. Environ. Manag. 2021, 68, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Gomez, E.J.; Delgado, J.A.; Gonzalez, J.M. Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a function of water availability and temperature. Ecol. Evol. 2020, 10, 10105–10115. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Liu, X.L.; Zhang, C.; Shi, P.X.; Wang, H.X. Effect of Different Fertilization Treatments on Sandy Soil Physical and Chemical Properties and Soil Enzyme Activity under the Integrated Model of Water and Fertilizer. J. Anhui Agric. Sci. 2020, 48, 167–171. [Google Scholar]
- Jiao, X.L.; Yin, K.J.; Bi, Y.L.; Li, M.C.; Tian, L.X. Plant diversity and its relationship with soil enzyme activities and nutrients under different reclamation treatments in open-pit coal mining area. Coal Sci. Technol. 2023, 51, 316–327. [Google Scholar]
- Tian, Y.L.; Wu, X.P.; Chen, X.F. Effect of Diversity Mulching Model on Soil Enzyme Activities in the Loess Plateau Orchard. Acta Agrestia Sin. 2022, 30, 2581–2589. [Google Scholar]
- Arunrat, N.; Sansupa, C.; Sereenonchai, S.; Hatano, R.; Lal, R. Fire-Induced Changes in Soil Properties and Bacterial Communities in Rotational Shifting Cultivation Fields in Northern Thailand. Biology 2024, 13, 383. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Meadows, M.; Sun, L.C.; Wu, T.; Bu, X.G.; Xu, Y. Differential effects of various reclamation treatments on soil characteristics: An experimental study of newly reclaimed tidal mudflats on the east China coast. Sci. Total Environ. 2021, 768, 144996. [Google Scholar] [CrossRef] [PubMed]
- Henseler, J. Composite-Based Structural Equation Modeling: Analyzing Latent and Emergent Variables; Guilford Press: New York, NY, USA, 2020. [Google Scholar]
- Ruan, M.Y.; Zhang, Y.X.; Chai, T.Y. Rhizosphere Soil Microbial Properties on Tetraena mongolica in the Arid and Semi-Arid Regions, China. Int. J. Environ. Res. Public Health 2020, 17, 5142. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, Y.X.; Huang, H.; Yang, F. Deciphering soil bacterial community structure in subsidence area caused by underground coal mining in arid and semiarid area. Appl. Soil Ecol. 2021, 163, 103916. [Google Scholar] [CrossRef]
- Song, S.J.; Zhang, Y.L.; Wang, S.M.; Du, L.; Liu, M.N. Influence of mining ground fissures on soil microorganism and enzyme activities in Northern Shaanxi coal mining area. J. China Coal Soc. 2021, 46, 1630–1640. [Google Scholar]
- Li, F.; Li, X.J.; Hou, L.; Shao, A.R. A long-term study on the soil reconstruction process of reclaimed land by coal gangue filling. Catena 2020, 195, 104874. [Google Scholar]
- Min, X.Y.; Xu, D.Y.; Hu, X.; Li, X.J. Changes in total organic carbon and organic carbon fractions of reclaimed minesoils in response to the filling of different substrates. J. Environ. Manag. 2022, 312, 114928. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.Z.; Wang, S.Y.; Lu, X.; Shi, D.P.; Lv, S.Q.; Li, J.; Yang, Z.Y.; Wang, L.Q. Effects of Straw Retention, Film Mulching, and Nitrogen Input on Soil Quality in Dryland Wheat Field. Environ. Sci. 2023, 201, 133–143. [Google Scholar]
- Jing, Z.R.; Wang, J.M.; Wang, R.G.; Wang, P. Using multi-fractal analysis to characterize the variability of soil physical properties in subsided land in coal-mined area. Geoderma 2020, 361, 114054. [Google Scholar] [CrossRef]
- Wu, Y.G.; Gao, X.M.; Zhou, D.D.; Zhou, R.P. Changes in Soil Physical and Chemical Properties after a Coal Mine Subsidence Event in a Semi-Arid Climate Region. Pol. J. Environ. Stud. 2022, 31, 2329–2340. [Google Scholar] [CrossRef] [PubMed]
- Kuai, Y.; Su, X.Y.; Wang, J.F.; Fan, Z.Y.; Li, J.H.; Sun, N.; Zhang, J.Q.; Xu, M.G. Temporal and Spatial Evolution of Soil Organic Matter and Total Nitrogen in Typical Tobacco-planting Areas of Dali. J. Agric. Sci. Technol. 2023, 25, 177–185. [Google Scholar]
- Billah, M.; Khan, M.; Bano, A.; Hassan, T.U.; Munir, A.; Gurmani, A.R. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 2019, 36, 904–916. [Google Scholar] [CrossRef]
- Borges, B.M.; Abdala, D.B.; Souza, M.F. Organomineral phosphate fertilizer from sugarcane byproduct and its effects on soil phosphorus availability and sugarcane yield. Geoderma 2019, 339, 20–30. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Behrens, T.; Macmillan, R.A.; Viscarra, R.R.A. Teleconnections in spatial modelling. Geoderma 2019, 354, 113854. [Google Scholar] [CrossRef]
- Mattana, S.; Chelinho, S.; Sousa, J.P. Nonylphenol causes shifts in microbial communities and nitrogen mineralization in soil microcosms. Ecotoxicol. Environ. Saf. 2019, 181, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.H.; Zhu, T.B.; Yang, L.; Luo, L.L.; Xie, Y.C. The spatial relationship between soil alkeline-nitrogen content and environmental factors in China. Ecol. Environ. Sci. 2019, 28, 2199–2207. [Google Scholar]
- Li, T.; Liang, J.J.; Chen, X.Q.; Wang, H.Y.; Zhang, S.R.; Pu, Y.L.; Xu, X.X.; Li, H.; Xu, J.W.; Wu, X.B.; et al. The interacting roles and relative importance of climate, topography, soil properties and mineralogical composition on soil potassium variations at a national scale in China. Catena 2021, 196, 104875. [Google Scholar] [CrossRef]
- Li, P.F.; Du, G.Q.; Liu, C.; Liu, K.; Zhang, X.R. Acidity and basicity characteristics and acidification trend of the farmland soil in Huaibei Plain, Anhui Province. East China Geol. 2019, 40, 234–240. [Google Scholar]
- Muhtar, A.; Xiao, P.N.; Zhou, Y.; Xu, T. Spatial variability of cropland soil pH and nutrients and their affecting factors in mountainous hilly interlaced zone. J. South. Agric. 2019, 50, 1432–1441. [Google Scholar]
- Petersen, R.; Melchers, R. Effect of moisture content and compaction on the corrosion of mild steel buried in clay soils. Corros. Eng. Sci. Technol. 2019, 54, 587–600. [Google Scholar] [CrossRef]
- Huang, Y.H.; Kuang, X.Y.; Cao, Y.G.; Luo, G.B.; Wang, S.F.; Yang, G.; Bai, Z.K. Comparison of Soil Physical Properties between Reclaimed Land and Undamaged Land in Grassland Opencast Mining Area. J. Ecol. Rural Environ. 2019, 35, 940–946. [Google Scholar]
- Zheng, H.H.; Qin, J.X.; Sang, Z.T.; Xu, Y. Progress Review on the Influence of Coal Mining Subsidence on Soil Properties Based on Regional Characteristics. Chin. J. Soil Sci. 2022, 53, 1481–1491. [Google Scholar]
- Gao, Y.F.; Zhang, K.; Deng, X.; Wang, S.J.; Wu, F.X. Temporal and spatial variation of deep soil physical properties in coal mining subsidence area. Coal Eng. 2023, 55, 131–135. [Google Scholar]
- Sun, M.Y.; Liu, J.H.; Mi, J.Z.; Li, J.W. Effect of vegetation restoration on soil chemical biological properties in the opencast coal mine. J. Soil Water Conserv. 2019, 33, 206–212. [Google Scholar]
- Ananbeh, H.; Stojanović, M.; Pompeiano, A. Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems. Sci. Total Environ. 2019, 694, 133692. [Google Scholar] [CrossRef]
- Zhang, K.; Li, M.M.; Wang, K.; Gao, N.; Liu, D.Q.; Chen, Y.G. Depth-related response of soil enzymes to cyanobacteria-dominated crusts along a precipitation gradient. Land Degrad. Dev. 2021, 32, 4183–4192. [Google Scholar] [CrossRef]
- Ma, K.; Yang, F.; Zhang, Y.X. Influence of underground coal mining on soil fertility quality in the northwestern arid and semi-arid regions: A review. J. Univ. Chin. Acad. Sci. 2020, 37, 442–449. [Google Scholar]
- Chen, F.; Zhao, J.; Ma, J.; Zhang, Q.; Zhu, Y.F.; Luo, Z.B. Effects of Vegetation Restoration on Functional Groups Related to Soil Carbon, Nitrogen and Phosphorus Cycles in Open-pit Mining Area of the Loess Plateau. Acta Pedol. Sin. 2023, 60, 1507–1519. [Google Scholar]
- Sun, J.H.; Guo, E.H.; Yang, X.T.; Kong, Y.H.; Yang, L.; Liu, H.; Lin, X.B. Seasonal and spatial variations in soil biochemical properties in areas with different degrees of mining subsidence in Central China. Catena 2023, 224, 106984. [Google Scholar] [CrossRef]
- Gebicka, L.; Krych-Madej, J. The role of catalases in the prevention/promotion of oxidative stress. J. Inorg. Biochem. 2019, 197, 110699. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.H.; Yang, L.; Wei, J.; Quan, J.; Yang, X.T. The responses of soil bacterial communities and enzyme activities to the edaphic properties of coal mining areas in Central China. PLoS ONE 2020, 15, 0231198. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Han, H.H.; Gu, S.X.; Gao, R. Effects of Urea Application on Soil Organic Nitrogen Mineralization and Nitrogen Fertilizer Availability in a Rice–Broad Bean Rotation System. Sustainability 2023, 15, 6091. [Google Scholar] [CrossRef]
- Xu, H.W.; Qu, Q.; Chen, Y.H.; Liu, G.B.; Xue, S. Responses of soil enzyme activity and soil organic carbon stability over time after cropland abandonment in different vegetation zones of the Loess Plateau of China. Catena 2021, 196, 104812. [Google Scholar] [CrossRef]
- Zhao, Y.K.; Zheng, G.D.; Bo, H.Z.; Wang, Y.J.; Dong, J.Y.; Li, C.C.; Wang, Y.; Yan, S.W.; Liu, K.; Wang, Z.L.; et al. Habitats generated by the restoration of coal mining subsidence land differentially alter the content and composition of soil organic carbon. PLoS ONE 2023, 18, 0282014. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, H.Y.; Zhao, H.Y.; Xia, H.Q.; Sun, M.; Li, Z.Y.; Li, P.C.; Zheng, C.S.; Dong, H.L.; Liu, J.R. Phosphorus affects enzymatic activity and chemical properties in cotton soil. Plant Soil Environ. 2019, 65, 361–368. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Zhao, Z.H.; Li, F.; Zhang, J.B. Effects of organic and inorganic fertilization on soil organic carbon and enzymatic activities. Agronomy 2022, 12, 3125. [Google Scholar] [CrossRef]
- Molamahmood, H.V.; Qin, J.L.; Zhu, Y.T.; Deng, M.L.; Long, M.C. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil. Chemosphere 2020, 249, 126146. [Google Scholar] [CrossRef]
- Guan, B.; Xie, B.; Yang, S.; Hou, A.; Chen, M.; Han, G. Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecol. Eng. 2019, 136, 160–166. [Google Scholar] [CrossRef]
- Reyes-Martín, M.P.; Fernández-Ondoño, E.; Ortiz-Bernad, I.; Abreu, M.M. Influence of Intensive and Super-Intensive Olive Grove Management on Soil Quality—Nutrients Content and Enzyme Activities. Plants 2023, 12, 2779. [Google Scholar] [CrossRef] [PubMed]
- Tie, L.; Zhang, S.; Penuelas, J.; Sardans, J.; Zhou, S.; Hu, J.; Huang, C. Responses of soil C, N, and P stoichiometric ratios to N and S additions in a subtropical evergreen broad-leaved forest. Geoderma 2020, 379, 114633. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cui, D.; Yang, H.J.; Kasim, N. Differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley, Xinjiang. PeerJ 2020, 8, 8531. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, W.N.; Cuan, H.Y.; Li, M.Y.; Wu, J.Z.; Zhao, K.N.; Zhang, J.; Huang, M.; Li, Y.J. Effects of tillage methods on soil physical and chemical properties and enzyme activities in wheat-soybean rotation filed in dryland of western Henan Province. Agric. Res. Arid Areas 2023, 41, 168–178. [Google Scholar]
- Yang, S.H.; Chen, X.; Jiang, Z.W.; Ding, J.; Sun, X.; Xu, J.Z. Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation. Int. J. Environ. Res. Public Health 2020, 17, 333. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.K.; Liu, P.; Zhang, J.L.; Guo, F.; Wang, J.G.; Geng, Y.; Yang, S.; Meng, J.J.; Tang, Z.H.; Li, X.G.; et al. Effects of single-seed sowing on phenolic acid content and enzyme activity in rhizosphere soil of peanut. Chin. J. Oil Crop Sci. 2020, 42, 978–984. [Google Scholar]
- Li, Q.K.; Liu, P.; Zhao, H.J.; Song, X.Z.; Lin, H.T.; Shen, Y.W.; Li, L.; Wan, S.B. Maize root exudates alleviated allelopathic inhibition of phenolic acids in soil of continuous cropping peanut. Chin. J. Oil Crop Sci. 2019, 41, 921–931. [Google Scholar]
- Shi, Y.Y.; Cui, Y.; Zhang, M.; Miao, Y.; Zhong, X.Y.; Zhao, R.H. Effect of Ceramsite and Microbial Agent on Soil Improvement and Plant Growth in Open-pit Coal Mine. Chin. J. Grassl. 2023, 45, 87–97. [Google Scholar]
- Wang, Y.Q.; Song, M.L.; Zhou, R.; Wang, H.S. Effects of spread of Ligularia virgaurea on soil physicochemical properties and enzyme activities in alpine meadow. Ecol. Environ. Sci. 2023, 32, 1384–1391. [Google Scholar]
- Chen, J.; Yao, C.S.; Lin, Y.M.; Wu, C.Z.; Li, J. Soil enzyme activity difference in woodlands, and soil fertility quality evaluation in Mount Wuyi, China. Mt. Res. 2021, 39, 194–206. [Google Scholar]
Inspection Indicators | Acceptance Criteria | Model Results |
---|---|---|
RMR | the smaller the better | 0.082 |
χ2/df | <3 | 1.696 |
NFI | 0~1, the bigger the better | 0.925 |
CFI | >0.90 | 0.961 |
GFI | >0.90 | 0.938 |
AGFI | >0.90 | 0.808 |
NCP | the smaller the better | 11.419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Li, J.; Li, X.; Zhang, J.; Song, W. Effect of Coal Mining Subsidence on Soil Enzyme Activity in Mining Areas with High Underground Water Levels. Water 2024, 16, 1704. https://doi.org/10.3390/w16121704
Xu R, Li J, Li X, Zhang J, Song W. Effect of Coal Mining Subsidence on Soil Enzyme Activity in Mining Areas with High Underground Water Levels. Water. 2024; 16(12):1704. https://doi.org/10.3390/w16121704
Chicago/Turabian StyleXu, Ruiping, Junying Li, Xinju Li, Jinning Zhang, and Wen Song. 2024. "Effect of Coal Mining Subsidence on Soil Enzyme Activity in Mining Areas with High Underground Water Levels" Water 16, no. 12: 1704. https://doi.org/10.3390/w16121704
APA StyleXu, R., Li, J., Li, X., Zhang, J., & Song, W. (2024). Effect of Coal Mining Subsidence on Soil Enzyme Activity in Mining Areas with High Underground Water Levels. Water, 16(12), 1704. https://doi.org/10.3390/w16121704