Factors Governing Site and Charge Density of Dissolved Natural Organic Matter
Abstract
:1. Introduction
2. Theory
2.1. Charge and Site Densities
2.2. Organic Charge Models
3. Materials and Methods
3.1. Data Mining
3.2. Calculation of Organic Charge
3.3. Determining Site Density through Model Optimization
3.4. Limitations in the Conceptual Approach
4. Results and Discussion
4.1. Comparison of OAN− Based on Oliver and Hruška Models
4.2. Comparison of Modelled OAN− with Calculated Org.−
4.3. Governing Factors for Site and Charge Densities
4.4. Spatiotemporal Variations in Functional Site Density
4.5. Spatial Differences in Contemporary Site Density
4.6. Temporal Trends in Charge Density
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteith, D.T.; Henrys, P.A.; Hruška, J.; de Wit, H.A.; Krám, P.; Moldan, F.; Posch, M.; Räike, A.; Stoddard, J.L.; Shilland, E.M.; et al. Long-term rise in riverine dissolved organic carbon concentration is predicted by electrolyte solubility theory. Sci. Adv. 2023, 9, eade3491. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- De Wit, H.A.; Garmo, Ø.A.; Jackson-Blake, L.; Clayer, F.; Vogt, R.D.; Kaste, Ø.; Gundersen, C.B.; Guerrerro, J.L.; Hindar, A. Changing Water Chemistry in One Thousand Norwegian Lakes During Three Decades of Cleaner Air and Climate Change. Glob. Biogeochem. Cycles 2023, 37, e2022GB007509. [Google Scholar] [CrossRef]
- Kritzberg, E.S.; Hasselquist, E.M.; Škerlep, M.; Löfgren, S.; Olsson, O.; Stadmark, J.; Valinia, S.; Hansson, L.-A.; Laudon, H. Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 2020, 49, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Klante, C. Hydrophysical Processes Governing Brownification—A Case Stud of Lake Bolmen, Sweden. Ph. D. Thesis, Lund University, Lund, Sweden, 2023. [Google Scholar]
- Eklöf, K.; von Brömssen, C.; Amvrosiadi, N.; Fölster, J.; Wallin, M.B.; Bishop, K. Brownification on hold: What traditional analyses miss in extended surface water records. Water Res. 2021, 203, 117544. [Google Scholar] [CrossRef] [PubMed]
- Reuss, J.O.; Johnson, D.W. Acid Deposition and the Acidification of Soils and Waters. In Ecological Studies; Springer: Berlin, Germany, 1986; Volume 59, p. 119. [Google Scholar]
- Lydersen, E.; Larssen, T.; Fjeld, E. The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Sci. Total Environ. 2004, 326, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kastl, G.; Sathasivan, A.; Fisher, I.; Van Leeuwen, J. Modeling DOC Removal Enhanced Coagulation. J.-Am. Water Work. Assoc. 2004, 96, 79–89. [Google Scholar] [CrossRef]
- Brakke, D.; Henriksen; Norton, S. The relative importance of acidity sources for humic lakes in Norway. Nature 1987, 329, 432–434. [Google Scholar] [CrossRef]
- Henriksen, A.; Seip, H.M. Strong and weak acids in surface waters of southern Norway and southwestern Scotland. Water Res. 1980, 14, 809–813. [Google Scholar] [CrossRef]
- Kortelainen, P. Charge-density of total organic carbon in Finnish lakes. Environ. Pollut. 1992, 77, 107–113. [Google Scholar] [CrossRef]
- Hruška, J.; Köhler, S.; Laudon, H.; Bishop, K. Is a Universal Model of Organic Acidity Possible: Comparison of the Acid/Base Properties of Dissolved Organic Carbon in the Boreal and Temperate Zones. Environ. Sci. Technol. 2003, 37, 1726–1730. [Google Scholar] [CrossRef]
- Oliver, B.G.; Thurman, E.M.; Malcolm, R.L. The contribution of humic substances to the acidity of colored natural waters. Geochim. Et Cosmochim. Acta 1983, 47, 2031–2035. [Google Scholar] [CrossRef]
- Perdue, E.M.; Ritchie, J.D. Treatise on Geochemistry; Heinrich, D.H., Karl, K.T., Eds.; Pergamon: Oxford, UK, 2003; Chapter 5.10; pp. 273–318. [Google Scholar]
- Vogt, R.D.; Porcal, P.; Hejzlar, J.; Paule-Mercado, M.C.; Haaland, S.; Gundersen, C.B.; Orderud, G.I.; Eikebrokk, B. Distinguishing between Sources of Natural Dissolved Organic Matter (DOM) Based on Its Characteristics. Water 2023, 15, 3006. [Google Scholar] [CrossRef]
- Hindar, A.; Larssen, T. Modification of ANC- and critical load assessments by including strong organic acids. NIVA-report. Naturens Tålegrenser. 2005, 5030. (In Norwegian) [Google Scholar]
- Driscoll, C.T.; Lehtinen, M.D.; Sullivan, T.J. Modelling the acid-base chemistry of organic solutes in Adirondack, New York, lakes. Water Resour. Res. 1994, 30, 297–306. [Google Scholar] [CrossRef]
- Schecher, W.D.; Driscoll, C.T. An evaluation of uncertainty associated with aluminum equilibrium calculations. Water Resour. Res. 1987, 23, 525–534. [Google Scholar] [CrossRef]
- Kortelainen, P. Content of Total Organic Carbon in Finnish Lakes and Its Relationship to Catchment Characteristics. Can. J. Fish. Aquat. Sci. 1993, 50, 1477–1483. [Google Scholar] [CrossRef]
- Tipping, E. WHAMC—A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973–1023. [Google Scholar] [CrossRef]
- Tipping, E. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kinniburgh, D.G.; van Riemsdijk, W.H.; Koopal, L.K.; Borkovec, M.; Benedetti, M.F.; Avena, M.J. Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry, and thermodynamic consistency. Colloids Surf. A 1999, 151, 147–166. [Google Scholar] [CrossRef]
- Vogt, R.D.; Agnieszka, K.; Arle, J.; Austnes, K.; Van Dam, H.; Futter, M.; Fölster, J.; Gundersen, C.B.; Higgins, S.N.; Houle, D.; et al. Trends and Patterns in Surface Water Chemistry in Europe and North America between 1990 and 2020, with a Focus on Calcium; Report No. ICP Waters Report 156/2024, 65; Norwegian Institute for Water Research: Oslo, Norway, 2024. [Google Scholar]
- Sandin, L.; Thrane, J.-E.; Persson, J.; Kile, M.R.; Bækkelie, K.A.; Myrvold, K.M.; Garmo, Ø.A.; Grung, M.; Calidonio, J.-L.; de Wit, H.; et al. Monitoring of Reference Rivers—Testing of the Classification System for Basic Monitoring in Reference Watercourses; 243/2021; Norwegian Institute for Water Research: Oslo, Norway, 2021. (In Norwegian) [Google Scholar]
- Kaste, Ø.; Gundersen, C.B.; Sample, J.E.; McGovern, M.; Skancke, L.B.; Allan, I.; Jenssen, M.T.S.; Bæk, K.; Skogan, O.A.S. The Norwegian River Monitoring Programme 2022—Water Quality Status and Trends. Elveovervåkningsprogrammet 2022—Vannkvalitetstilstand Og-Trender; NIVA-rapport 7903-2023; Norwegian Institute for Water Research: Oslo, Norway, 2023. [Google Scholar]
- Norwegian Environment Agency. Vannmiljø Database. Available online: https://vannmiljo.miljodirektoratet.no/ (accessed on 5 June 2024).
- Vogt, R.D.; Garmo, Ø.A.; Schartau, A.K.; Haaland, S.L. Methods for calculating the water acid neutralizing capacity (ANC) for classification of acidification status. Vann 2023, 02/58, 105–117. (In Norwegian) [Google Scholar]
- EN ISO 9963-1:1994; Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity. ISO: Geneva, Switzerland.
- Kaste, Ø.; Skarbøvik, E.; Vogt, R.D. Investigation on Parameters for Suspended Matter and Organic Material That Can Be Included in the Water Classification System; Report 58 (NIVA Report 7860-2023); Norwegian Institute for Water Research: Oslo, Norway, 2023. (In Norwegian) [Google Scholar]
- Vogt, R.D.; Akkanen, J.; Andersen, D.O.; Bruggemann, R.; Chatterjee, B.; Gjessing, E.; Kukkonen, J.V.K.; Larsen, H.E.; Luster, J.; Paul, A.; et al. Key site variables governing the functional characteristics of dissolved natural organic matter (DNOM) in Nordic forested catchments. Aquat. Sci. 2004, 66, 195–210. [Google Scholar] [CrossRef]
- Tipping, E.; Lofts, S.; Sonke, E. Humic Ion-Binding Model VII: A revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225–235. [Google Scholar] [CrossRef]
- Hongve, D.; Riise, G.; Kristiansen, J. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—A result of increased precipitation? Aquat. Sci. 2004, 66, 231–238. [Google Scholar] [CrossRef]
Abbreviation | Full Text | Meaning |
---|---|---|
DNOM | Dissolved natural organic matter | Humic and fulvic compounds |
TOC | Total organic carbon | Concentration of organic carbon (C) |
CD | Charge density | Anionic charge per mg C of DNOM |
SD | Site density | Weak acid functional sites per mg C of DNOM |
Org.− | Organic charge | Organic charge based on ion balance including estimate of HCO3− |
OAN− | Organic anions | Modelled organic charge |
Measured | Calculated | Oliver Modelled | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site | No. samples | SO42− | pH | TOC | RAl | Org.− | CD | OAN− | SD | R2 |
# | ||||||||||
Birkenes | 1083 | 48.5 | 4.88 | 5.7 | 270 | 14.8 | 2.49 | 22 | 5.31 | 0.7781 |
Øygardsbekken | 826 | 34.8 | 5.49 | 1.5 | 58 | 7.37 | 4.23 | 15 | 11.7 | 0.5703 |
Langtjern | 1086 | 16.3 | 5.05 | 11 | 155 | 59.8 | 5.25 | 61 | 6.88 | 0.9892 |
Storgama | 1047 | 14.3 | 5.00 | 6.2 | 103 | 27.1 | 4.30 | 28 | 5.97 | 0.9585 |
Kårvatn | 806 | 12.5 | 6.39 | 0.87 | 14 | 13.7 | 14.8 | 18 | 19.1 | 0.7426 |
Dalelva | 1081 | 77.5 | 6.37 | 3.4 | 34 | 37.8 | 10.9 | 43 | 12.6 | 0.8625 |
Station | CD Trend | SO42− Trend | H+ Trend | ILAl/TOC Trend |
---|---|---|---|---|
Birkenes | 0.10 | −1.93 | −0.10 | −0.47 |
Øygardsbekken | 0.11 | −1.13 | −0.14 | −0.31 |
Langtjern | 0.01 | −0.73 | −0.02 | −0.28 |
Storgama | 0.06 | −0.84 | −0.19 | −0.30 |
Kårvatn | −0.32 | −0.16 | 0.00 | −0.15 |
Dalelva | −0.17 | −1.02 | 0.00 | −0.20 |
Dataset | Site Type | Data Type | Period | # Sites | # Samples | Oliver SD | Hruška SD | Oliver CD | Hruška CD |
---|---|---|---|---|---|---|---|---|---|
Trend Lakes | Acid sensitive | Spatio-temporal | 1986–2020 | 44 | 1 535 | 11.1 | 13.9 | 6.36 | 6.07 |
Reference Streams | Different land use | Spatio-temporal | 2017–2023 | 35 | 1 310 | 14.4 | 16.3 | 12.0 | 12.2 |
Reference Streams | Different land use | Spatial | 2022 | 16 | 181 | 13.8 | 15.8 | 12.3 | 13.6 |
Rivers | High order | Spatial | 2021–2023 | 10 | 335 | 11.0 | 12.6 | 8.29 | 8.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogt, R.D.; Garmo, Ø.A.; Austnes, K.; Kaste, Ø.; Haaland, S.; Sample, J.E.; Thrane, J.-E.; Skancke, L.B.; Gundersen, C.B.; de Wit, H.A. Factors Governing Site and Charge Density of Dissolved Natural Organic Matter. Water 2024, 16, 1716. https://doi.org/10.3390/w16121716
Vogt RD, Garmo ØA, Austnes K, Kaste Ø, Haaland S, Sample JE, Thrane J-E, Skancke LB, Gundersen CB, de Wit HA. Factors Governing Site and Charge Density of Dissolved Natural Organic Matter. Water. 2024; 16(12):1716. https://doi.org/10.3390/w16121716
Chicago/Turabian StyleVogt, Rolf D., Øyvind A. Garmo, Kari Austnes, Øyvind Kaste, Ståle Haaland, James E. Sample, Jan-Erik Thrane, Liv Bente Skancke, Cathrine B. Gundersen, and Heleen A. de Wit. 2024. "Factors Governing Site and Charge Density of Dissolved Natural Organic Matter" Water 16, no. 12: 1716. https://doi.org/10.3390/w16121716
APA StyleVogt, R. D., Garmo, Ø. A., Austnes, K., Kaste, Ø., Haaland, S., Sample, J. E., Thrane, J.-E., Skancke, L. B., Gundersen, C. B., & de Wit, H. A. (2024). Factors Governing Site and Charge Density of Dissolved Natural Organic Matter. Water, 16(12), 1716. https://doi.org/10.3390/w16121716