Groundwater Springs Influence Fish Community Distribution and Trout Condition across a Longitudinal Gradient in a Coldwater Catchment in Southeastern Minnesota, USA
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Stream Surveys
2.3. Data Analyses
3. Results
3.1. Spring Distribution and Influence
3.2. Diversity
3.3. CPUE and Trout Abundance Estimates
3.4. Trout Condition
3.5. Modeling
4. Discussion
4.1. Major Findings
4.2. Conceptual Framework and Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connell, J.H.; Sousa, W.P. On the evidence needed to judge ecological stability or persistence. Am. Nat. 1983, 121, 789–824. [Google Scholar] [CrossRef]
- Hitt, N.P.; Rogers, K.M.; Kessler, K.G.; Briggs, M.A.; Fair, J.H. Stabilising effects of karstic groundwater on stream fish communities. Ecol. Freshw. Fish 2022, 32, 538–551. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Belt, K.T.; Secor, D.H.; Wingate, R.L. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Jucker, T.; Svenning, J. Unifying the concepts of stability and resilience in ecology. J. Ecol. 2021, 109, 3114–3132. [Google Scholar] [CrossRef]
- Hitt, N.P.; Rogers, K.M.; Kelly, Z.A.; Henesy, J.; Mullican, J.E. Fish life history traits indicate increasing flow stochasity in an unregulated river. Ecosphere 2020, 11, e03026. [Google Scholar] [CrossRef]
- Varela, W.L.; Mundahl, N.D.; Staples, D.F.; Greene, R.H.; Bergen, S.; Cochran-Biederman, J.; Weaver, C.R. Influence of Riparian Conditions on Physical Instream Habitats in Trout Streams in Southeastern Minnesota, USA. Water 2024, 16, 864. [Google Scholar] [CrossRef]
- Brierley, G.J. The socio-ecological river, socio-economic, cultural and environmental relations to river systems. In Finding the Voice of the River: Beyond Restoration and Management; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2020; pp. 29–60. [Google Scholar]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian Buffers as a Critical Landscape Feature: Insights for Riverscape Conservation and Policy Renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- Opperman, J.J.; Merenlender, A.M. The effectiveness of Riparian Restoration for Improving Fish Habitat in Four Hardwood-Dominated California Streams. N. Am. J. Fish. Manag. 2004, 24, 822–834. [Google Scholar] [CrossRef]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science; Academic Press: London, UK, 2008. [Google Scholar]
- Magoulick, D.D.; Dekar, M.P.; Hodges, S.W.; Scott, M.K.; Rabalais, M.R.; Bare, C.M. Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought. Sci. Rep. 2021, 11, 10704. [Google Scholar] [CrossRef]
- Kaandorp, V.P.; Doornenbal, P.J.; Broers, H.P.; de Louw, P.G.B. Temperature buffering by groundwater in ecologically valuable lowland streams under current and future climate conditions. J. Hydrol. X 2019, 3, 100031. [Google Scholar] [CrossRef]
- Mims, M.C.; Olden, J.D. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 2012, 93, 35–45. [Google Scholar] [CrossRef]
- Krider, L.A.; Magner, J.A.; Perry, J.; Vondracek, B.; Ferrington, L.C., Jr. Air-water temperature relationships in the trout streams of southeastern Minnesota’s carbonate-sandstone landscape. J. Am. Water Resour. Assoc. 2013, 49, 896–907. [Google Scholar] [CrossRef]
- Luhmann, A.J.; Covington, M.D.; Peters, A.J.; Alexander, S.C.; Anger, C.T.; Green, J.A.; Runkel, A.C.; Alexander, E.C., Jr. Classification of Thermal Patterns at Karst Springs and Cave Streams. Ground Water 2011, 49, 324–335. [Google Scholar] [CrossRef]
- Watts, G.; Battarbee, R.W.; Bloomfield, J.P.; Crossman, J.; Daccache, A.; Durance, L.; Elliot, J.A.; Garner, G.; Hannaford, J.; Hannah, D.M.; et al. Climate change and water in the UK—Past changes and future prospects. Prog. Phys. Geogr. 2015, 39, 6–28. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. 2010, 365, 2093–2106. [Google Scholar] [CrossRef]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Isaak, D.J.; Luce, C.; Horan, D.L.; Chandler, G.L.; Wollrab, S.P.; Nagel, D.E. Global warming of salmon and trout Rivers in the Northwestern U.S.: Road to ruin or path through purgatory? Trans. Am. Fish. Soc. 2018, 147, 566–587. [Google Scholar] [CrossRef]
- Kaandorp, V.P.; Molina-Navarro, E.; Andersen, H.E.; Bloomfield, J.P.; Kuijper, M.J.M.; de Louw, P.G.B. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems. Sci. Total Environ. 2018, 627, 880–895. [Google Scholar] [CrossRef]
- Hammond, J.C.; Simeone, C.; Hecht, J.S.; Hodgkins, G.A.; Lombard, M.; McCabe, G.; Wolock, D.; Wieczorek, M.; Olson, C.; Caldwell, T.; et al. Going beyond low flows: Streamflow drought deficit and duration illuminate distinct spatio-temporal drought patterns and trends in the U.S. during the last century. Water Resour. Res. 2022, 58, e2022WRO31930. [Google Scholar] [CrossRef]
- Mundahl, N.D.; Varela, W.L.; Weaver, C.; Mundahl, E.D.; Cochran-Biederman, J.L. Stream habitats and aquatic communities in an agricultural watershed: Changes related to a mandatory riparian buffer law. Environ. Manag. 2023, 5, 945–958. [Google Scholar] [CrossRef]
- Dieterman, J.D.; Mitro, M.D. Stream Habitat Needs for Brook Trout and Brown Trout in the Driftless Area. In A Look Back at Driftless Area Science to Plan for Resiliency in an Uncertain Future, Proceedings of the 11th Annual Driftless Symposium, La Crosse, WI, USA, 5–6 February 2019; Trout Unlimited: Arlington, VA, USA, 2019. [Google Scholar]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Chang. 2012, 113, 499–524. [Google Scholar] [CrossRef]
- Bendorf, J.; Hubbard, J.; Kucharik, C.J.; VanLoocke, A. Rapid changes in agricultural land use and hydrology in the Driftless Region. Agrosyst. Geosci. Environ. 2021, 4, e20214. [Google Scholar] [CrossRef]
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Maitland, B.M.; Latzka, A.W. Shifting climate conditions affect recruitment in Midwestern stream trout, but depend on seasonal and spatial context. Ecosphere 2022, 13, e4308. [Google Scholar] [CrossRef]
- Mundahl, N.; Borsari, B.; Meyer, C.; Wheeler, P.; Siderius, N.; Harmes, S. Sustainable Management of Water Quality in Southeastern Minnesota, USA: History, Citizen Attitudes, and Future Implications. Sustainable Water Use and Management: Examples of New Approaches and Perspectives; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Iannicelli, M. Evolution of the Driftless Area and Contiguous Regions of Midwestern USA Through Pleistocene Periglacial Processes. Open Geol. J. 2010, 4, 35–54. [Google Scholar] [CrossRef]
- Adams, S.B.; Schmetterling, D.A.; Neely, D.A. Summer Stream Temperatures Influence Sculpin Distributions and Spatial Partitioning in the Upper Clark River Basin, Montana. Copeia 2015, 103, 416–428. [Google Scholar] [CrossRef]
- Varela, W.L.; Mundahl, N.D.; Bergen, S.; Staples, D.F.; Cochran-Biederman, J.; Weaver, C.R. Physical and Biological Stream Health in an Agricultural Watershed after 30+ Years of Targeted Conservation Practices. Water 2023, 15, 3475. [Google Scholar] [CrossRef]
- Guy, C.S.; Brown, M.L. Analysis and Interpretation of Freshwater Fisheries Data; American Fisheries Society: Bethesda, MD, USA, 2007. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Simpson, E.H. Measurement of species diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pope, K.L.; Kruse, C.G. Condition. In Analysis and Interpretation of Freshwater Fisheries Data; American Fisheries Society: Bethesda MD, USA, 2007; pp. 423–471. [Google Scholar]
- Rencher, A.C.; Christensen, W.F. Methods of Multivariate Analysis, 3rd ed.; Wiley Series in Probability Statistics; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Degani, A.; Shafto, M.; Olson, L. Canonical correlation analysis: Use of composite heliographs for representing multiple patterns. In Proceedings of the International Conference on Theory and Application of Diagrams, Stanford, CA, USA, 28–30 June 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 93–97. [Google Scholar]
- Smith, E.A.; Gillete, T.; Blann, K.; Coburn, B.H.; Rhees, S. Drain Tiles and Groundwater Resources: Understanding the Relations; Minnesota Ground Water Association: St Paul, MN, USA, 2018. [Google Scholar]
- Snyder, C.D.; Hitt, N.P.; Young, J.A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 2015, 25, 1397–1419. [Google Scholar] [CrossRef]
- Trimble, S.W., Jr.; Sartz, R.S. How far from a stream should a logging road be located? J. For. 1957, 55, 339–341. [Google Scholar]
- Meleason, M.A.; Gregory, S.V.; Bolte, J.P. Implications of Riparian Management Strategies on Wood in Streams of the Pacific Northwest. Ecol. Appl. 2003, 13, 1212–1221. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation-A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Roghair, C.N.; Dolloff, C.A.; Underwood, M.K. Response of a brook trout population and instream habitat to a catastrophic flood and debris flow. Trans. Am. Fish. Soc. 2002, 131, 718–730. [Google Scholar] [CrossRef]
- Yarnell, S.M.; Thoms, M.C. Enhancing the functionality of environmental flows through an understanding of biophysical processes in the riverine landscape. Front. Environ. Sci. 2022, 10, 787216. [Google Scholar] [CrossRef]
- Grimm, N.B.; Pickett, S.T.A.; Hale, R.L.; Cadenasso, M.L. Does the ecological concept of disturbance have utility in urban social-ecological-technological systems? Ecosyst. Health Sustain. 2017, 3, e01255. [Google Scholar] [CrossRef]
- Thoms, M.C.; Meitzen, K.M.; Julian, J.P.; Butler, D.R. Bio-geomorphology and resilience thinking: Common ground and challenges. Geomorphology 2018, 305, 1–7. [Google Scholar] [CrossRef]
- Chopel, Y. Global Warming and Climate Change (GWCC) Realities. In The Nature, Causes, Effects and Mitigation of Climate Change on the Environment; IntechOpen: London, UK, 2022; Volume 3. [Google Scholar]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Voss, C.I. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour. Res. 2014, 50, 3253–3274. [Google Scholar] [CrossRef]
- Kessler, K.G.; Rogers, K.M.; Marsh, C.W.; Hitt, N.P. Karst Terrain Promoted Thermal Resiliency in Headwater Streams. Proc. West Va. Acad. Sci. 2023, 95, 1–8. [Google Scholar]
- O’Driscoll, M.A.; DeWalle, D.R. Stream-Air Temperatures Relations to Classify Stream-Ground Water Interactions in a Karst Setting, Central Pennsylvania, USA. J. Hydrol. 2006, 329, 140–153. [Google Scholar] [CrossRef]
- Cristea, N.; Janisch, J. Modeling Effects of the Riparian Buffer Width on Effective Shade and Stream Temperature; Washington State Department of Ecology: Lacey, WA, USA, 2007. [Google Scholar]
- Comte, L.; Olden, J.D.; Tedesco, P.A.; Ruhi, A.; Giam, X. Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proc. Natl. Acad. Sci. USA 2021, 118, e2011639118. [Google Scholar] [CrossRef] [PubMed]
- Welcomme, R.L. Fisheries Ecology of Floodplain Rivers; Longman: London, UK, 1979. [Google Scholar]
- Death, R.G.; Collier, K.J. Measuring stream macroinvertebrate responses to gradients of vegetation cover: When is enough enough? Freshw. Biol. 2010, 55, 1447–1464. [Google Scholar] [CrossRef]
Springs | Testing | |||||
---|---|---|---|---|---|---|
Fork | Q | n | X2 | DF | p | |
North | 9.2 (3.04) | 459 | 26 | |||
Middle | 9.6 (3.10) | 3978 | 30 | 9.3 | 2 | 0.05 * |
South | 9 (3.00) | 1854 | 19 | |||
Section | ||||||
NF-HW | 9.9 | 28 | 1 | |||
NF-MS | 1 | 41.1 | 2 | <0.0001 ** | ||
NF-LS | 9.2 | 431 | 24 | |||
MF-HW | 8.9 | 184 | 3 | |||
MF-MS | 12.6 | 305 | 7 | 15.8 | 2 | <0.0001 ** |
MF-LS | 8.7 | 3489 | 20 | |||
SF-HW | 9.1 | |||||
SF-MS | 1 | 32.5 | 2 | <0.0001 ** | ||
SF-LS | 9 | 1854 | 18 |
Coefficient | Estimate | Std. Error | T | p |
---|---|---|---|---|
Middle Fork | 0.486 | 0.064 | 7.55 | 3.9 × 10−10 *** |
North Fork | 0.151 | 0.077 | 1.96 | 0.05 |
South Fork | 0.283 | 0.081 | 3.51 | 0.001 *** |
River.km | −0.001 | 0.002 | −0.499 | 0.62 |
Model | DF | F | p | |
lm | 3 and 57 | 4.72 | 0.005 |
Fork | F | p | |
---|---|---|---|
NF-HW | 0.49 (0.35) | ||
NF-MS | 0.67 (0.05) | 1.52 | 0.245 |
NF-LS | 0.60 (0.15) | ||
MF-HW | 0.61 (0.27) | ||
MF-MS | 0.72 (0.02) | 6.71 | 0.007 * |
MF-LS | 0.29 (0.24) | ||
SF-HW | 0.59 (0.24) | ||
SF-MS | 0.79 (0.05) | 3.35 | 0.05 * |
SF-LS | 0.73 (0.12) |
Fork | CPUE | Abundance | F | p | ||
---|---|---|---|---|---|---|
NF-HW | 0.043 (0.07) | 32 (0) | ||||
NF-MS | 0.23 (0.15) | 82 (33.4) | 9.21563 | 0.00322 * | ||
NF-LS | 0.56 (0.24) | 193 (82.3) | ||||
MF-HW | 0.202 (0.21) | 67 (63.9) | ||||
MF-MS | 0.62 (0.70) | 166 (204) | 3.19866 | 0.06966 | ||
MF-LS | 1.30 (0.96) | 338 (216) | ||||
SF-HW | 0.01 (0.01) | 11 (0) | ||||
SF-MS | 0.23 (0.15) | 65 (34) | 16.5381 | 0.00016 * | ||
SF-LS | 0.73 (0.15) | 234 (97) | ||||
Model | DF | F | p | |||
lm | 5 and 55 | 14.72 | 3.75 × 10−9 *** |
Fork | Estimate | Std. Error | T | p |
---|---|---|---|---|
Middle | 83.9 | 2.53 | 33.14 | 2 × 10−16 *** |
North | −7.66 | 2.88 | −2.65 | 0.0121 * |
South | −11.2 | 3.48 | −3.21 | 0.0029 ** |
River.km | 0.5 | 0.09 | 5.03 | 1.69 × 10−5 *** |
Model | DF | F | P | |
Lm | 3 and 33 | 8.303 | 0.0003 |
Fork | Wr | F | p |
---|---|---|---|
NF-HW | 110 (0.90) | ||
NF-MS | 89 (7.41) | 11.2301 | 0.00277 * |
NF-LS | 85 (3.97) | ||
MF-HW | 93 (5.50) | ||
MF-MS | 96 (6.31) | 1.04063 | 0.38556 |
MF-LS | 91 (5.90) | ||
SF-HW | 118 (0) | ||
SF-MS | 90 (6.32) | 10.0172 | 0.00883 * |
SF-LS | 86 (5.64) |
Variate | Corr | F | p |
---|---|---|---|
1 | 0.764 | 5.45 | 9.63 × 10−6 |
2 | 0.510 | 2.97 | 0.026 |
3 | 0.196 | 1.32 | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, W.L.; Mundahl, N.D.; Staples, D.F.; Bergen, S.; Cochran-Biederman, J.; Weaver, C.R.; Thoms, M.C. Groundwater Springs Influence Fish Community Distribution and Trout Condition across a Longitudinal Gradient in a Coldwater Catchment in Southeastern Minnesota, USA. Water 2024, 16, 1961. https://doi.org/10.3390/w16141961
Varela WL, Mundahl ND, Staples DF, Bergen S, Cochran-Biederman J, Weaver CR, Thoms MC. Groundwater Springs Influence Fish Community Distribution and Trout Condition across a Longitudinal Gradient in a Coldwater Catchment in Southeastern Minnesota, USA. Water. 2024; 16(14):1961. https://doi.org/10.3390/w16141961
Chicago/Turabian StyleVarela, Will L., Neal D. Mundahl, David F. Staples, Silas Bergen, Jennifer Cochran-Biederman, Cole R. Weaver, and Martin C. Thoms. 2024. "Groundwater Springs Influence Fish Community Distribution and Trout Condition across a Longitudinal Gradient in a Coldwater Catchment in Southeastern Minnesota, USA" Water 16, no. 14: 1961. https://doi.org/10.3390/w16141961
APA StyleVarela, W. L., Mundahl, N. D., Staples, D. F., Bergen, S., Cochran-Biederman, J., Weaver, C. R., & Thoms, M. C. (2024). Groundwater Springs Influence Fish Community Distribution and Trout Condition across a Longitudinal Gradient in a Coldwater Catchment in Southeastern Minnesota, USA. Water, 16(14), 1961. https://doi.org/10.3390/w16141961