Modeling and Optimization of Electrochemical Advanced Oxidation of Clopidogrel Using the Doehlert Experimental Design Combined with an Improved Grey Wolf Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pharmaceutical Effluent
2.3. Analytical Determinations
2.4. Experimental Procedure
2.5. Doehlert Experimental Design
2.6. Improved Grey Wolf Optimizer (I-GWO)
3. Results and Discussion
3.1. Application of the Doehlert Experimental Design
3.2. Response Surface Analysis
3.3. Improved Grey Wolf Optimization
3.4. Validation of Optimal Conditions
3.5. Mineralization of Clopidogrel
3.6. Application to Real Industrial Wastewater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karungamye, P.; Rugaika, A.; Mtei, K.; Machunda, R. The Pharmaceutical Disposal Practices and Environmental Contamination: A Review in East African Countries. HydroResearch 2022, 5, 99–107. [Google Scholar] [CrossRef]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human Pharmaceuticals in Wastewater Treatment Processes. Crit. Rev. Environ. Sci. Technol. 2005, 35, 401–427. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oladoye, P.O.; Omotola, E.O. Adsorptive Reclamation of Pharmaceuticals from Wastewater Using Carbon-Based Materials: A Review. Kuwait J. Sci. 2024, 51, 100225. [Google Scholar] [CrossRef]
- Roslan, N.N.; Lau, H.L.H.; Suhaimi, N.A.A.; Shahri, N.N.M.; Verinda, S.B.; Nur, M.; Lim, J.-W.; Usman, A. Recent Advances in Advanced Oxidation Processes for Degrading Pharmaceuticals in Wastewater—A Review. Catalysts 2024, 14, 189. [Google Scholar] [CrossRef]
- Sacco, N.A.; Marchesini, F.A.; Gamba, I.; García, G. Photoelectrochemical Degradation of Contaminants of Emerging Concern with Special Attention on the Removal of Acetaminophen in Water-Based Solutions. Catalysts 2023, 13, 524. [Google Scholar] [CrossRef]
- Imparato, C.; Bifulco, A.; Silvestri, B.; Vitiello, G. Recent Advances in Endocrine Disrupting Compounds Degradation through Metal Oxide-Based Nanomaterials. Catalysts 2022, 12, 289. [Google Scholar] [CrossRef]
- Dharmaraj, S.; Ashokkumar, V.; Pandiyan, R.; Halimatul Munawaroh, H.S.; Chew, K.W.; Chen, W.-H.; Ngamcharussrivichai, C. Pyrolysis: An Effective Technique for Degradation of COVID-19 Medical Wastes. Chemosphere 2021, 275, 130092. [Google Scholar] [CrossRef]
- Adeoye, J.B.; Tan, Y.H.; Lau, S.Y.; Tan, Y.Y.; Chiong, T.; Mubarak, N.M.; Khalid, M. Advanced Oxidation and Biological Integrated Processes for Pharmaceutical Wastewater Treatment: A Review. J. Environ. Manag. 2024, 353, 120170. [Google Scholar] [CrossRef]
- Fallah, Z.; Zare, E.N.; Ghomi, M.; Ahmadijokani, F.; Amini, M.; Tajbakhsh, M.; Arjmand, M.; Sharma, G.; Ali, H.; Ahmad, A.; et al. Toxicity and Remediation of Pharmaceuticals and Pesticides Using Metal Oxides and Carbon Nanomaterials. Chemosphere 2021, 275, 130055. [Google Scholar] [CrossRef]
- Omotola, E.O.; Genthe, B.; Ndlela, L.; Olatunji, O.S. Environmental Risk Characterization of an Antiretroviral (ARV) Lamivudine in Ecosystems. Int. J. Environ. Res. Public Health 2021, 18, 8358. [Google Scholar] [CrossRef]
- Parida, V.K.; Sikarwar, D.; Majumder, A.; Gupta, A.K. An Assessment of Hospital Wastewater and Biomedical Waste Generation, Existing Legislations, Risk Assessment, Treatment Processes, and Scenario during COVID-19. J. Environ. Manag. 2022, 308, 114609. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, Interactive Effects and Ecological Risk of Diclofenac in Environmental Compartments and Biota—A Review. Sci. Total Environ. 2020, 698, 134057. [Google Scholar] [CrossRef]
- Vumazonke, S.; Khamanga, S.M.; Ngqwala, N.P. Detection of Pharmaceutical Residues in Surface Waters of the Eastern Cape Province. Int. J. Environ. Res. Public Health 2020, 17, 4067. [Google Scholar] [CrossRef]
- De Ilurdoz, M.S.; Sadhwani, J.J.; Reboso, J.V. Antibiotic Removal Processes from Water & Wastewater for the Protection of the Aquatic Environment—A Review. J. Water Process Eng. 2022, 45, 102474. [Google Scholar] [CrossRef]
- Oad, N.; Chandra, P.; Mohammad, A.; Tripathi, B.; Yoon, T. MoS2-Based Hetero-Nanostructures for Photocatalytic, Photoelectrocatalytic and Piezocatalytic Remediation of Hazardous Pharmaceuticals. J. Environ. Chem. Eng. 2023, 11, 109604. [Google Scholar] [CrossRef]
- Park, J.; Kim, C.; Hong, Y.; Lee, W.; Chung, H.; Jeong, D.-H.; Kim, H. Distribution and Removal of Pharmaceuticals in Liquid and Solid Phases in the Unit Processes of Sewage Treatment Plants. Int. J. Environ. Res. Public Health 2020, 17, 687. [Google Scholar] [CrossRef] [PubMed]
- Son, D.-J.; Kim, C.-S.; Lee, J.-H.; Yoon, J.-K.; Lee, S.-H.; Jeong, D.-H. Occurrence Assessment of Pharmaceuticals in Various Sewage Treatment Plants and Effluent-Receiving Streams in Korea. Water 2023, 15, 3897. [Google Scholar] [CrossRef]
- De Melo Franco Domingos, J.; De Alencar Neves, T.; De Sousa Maia, D.L.; Carvalho Siqueira, R.; Araújo Marques, M.V.; Alves, O.L.; Guimarães, J.R.; Antunes Nolasco, M.; Rosa, A.H. Effect of the Association of Coagulation/Flocculation, Hydrodynamic Cavitation, Ozonation and Activated Carbon in Landfill Leachate Treatment System. Sci. Rep. 2023, 13, 9502. [Google Scholar] [CrossRef]
- Suleiman, M.; Demaria, F.; Zimmardi, C.; Kolvenbach, B.A.; Corvini, P.F.-X. Analyzing Microbial Communities and Their Biodegradation of Multiple Pharmaceuticals in Membrane Bioreactors. Appl. Microbiol. Biotechnol. 2023, 107, 5545–5554. [Google Scholar] [CrossRef]
- Ilavský, J.; Barloková, D. The Removal of Selected Pharmaceuticals from Water by Adsorption with Granular Activated Carbons. In Proceedings of the 4th International Conference on Advances in Environmental Engineering, Ostrava, Czech Republic, 20–22 November 2023; p. 33. [Google Scholar]
- Esteki, S.; Karsaz, M.; Ghofrani, B.; Yegani, R.; Majidi, S. Combination of Membrane Bioreactor with Chemical Coagulation for the Treatment of Real Pharmaceutical Wastewater: Comparison of Simultaneous and Consecutive Pre-Treatment of Coagulation on MBR Performance. J. Water Process Eng. 2024, 60, 105108. [Google Scholar] [CrossRef]
- Mansour, D.; El-Sofany, W.I.; Abdella, F.I.A.; Masood, N.; Khalaf Dhahi Alsukaibi, A.; Bellakhal, N. Doehlert Experimental Design for the Optimization of Electrocoagulation Treatment of Landfill Leachate. Environ. Pollut. Bioavailab. 2021, 33, 395–401. [Google Scholar] [CrossRef]
- Jiad, M.M.; Abbar, A.H. Treatment of Petroleum Refinery Wastewater by Electrofenton Process Using a Low Cost Porous Graphite Air-Diffusion Cathode with a Novel Design. Chem. Eng. Res. Des. 2023, 193, 207–221. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Akpotu, S.O.; Oseghe, E.O.; Ayanda, O.S.; Skelton, A.A.; Msagati, T.A.M.; Ofomaja, A.E. Photocatalysis and Biodegradation of Pharmaceuticals in Wastewater: Effect of Abiotic and Biotic Factors. Clean Technol. Environ. Policy 2019, 21, 1701–1721. [Google Scholar] [CrossRef]
- Liu, Z.; Wardenier, N.; Hosseinzadeh, S.; Verheust, Y.; De Buyck, P.-J.; Chys, M.; Nikiforov, A.; Leys, C.; Van Hulle, S. Degradation of Bisphenol A by Combining Ozone with UV and H2O2 in Aqueous Solutions: Mechanism and Optimization. Clean Technol. Environ. Policy 2018, 20, 2109–2118. [Google Scholar] [CrossRef]
- Rashmishree, K.N.; Bhaskar, S.; Shri Hari, S.; Thalla, A.K. Correction: Green Synthesis of Laterite Iron-based Nanocatalysts Using Psidium Guajava and Macaranga Peltata Plant Extract for Its Catalytic Application in Fenton’s Oxidation of Triclosan. Clean Technol. Environ. Policy 2023, 25. [Google Scholar] [CrossRef]
- Gasmi, I.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Sonochemical Advanced Oxidation Process for the Degradation of Furosemide in Water: Effects of Sonication’s Conditions and Scavengers. Ultrason. Sonochem. 2023, 95, 106361. [Google Scholar] [CrossRef] [PubMed]
- Mansour, D.; Fourcade, F.; Soutrel, I.; Hauchard, D.; Bellakhal, N.; Amrane, A. Mineralization of Synthetic and Industrial Pharmaceutical Effluent Containing Trimethoprim by Combining Electro-Fenton and Activated Sludge Treatment. J. Taiwan Inst. Chem. Eng. 2015, 53, 58–67. [Google Scholar] [CrossRef]
- Al Marzouqi, F.; Selvaraj, R. Surface Plasmon Resonance Induced Photocatalysis in 2D/2D Graphene/g-C3N4 Heterostructure for Enhanced Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination. Catalysts 2023, 13, 560. [Google Scholar] [CrossRef]
- Mansour, D.; Fourcade, F.; Huguet, S.; Soutrel, I.; Bellakhal, N.; Dachraoui, M.; Hauchard, D.; Amrane, A. Improvement of the Activated Sludge Treatment by Its Combination with Electro Fenton for the Mineralization of Sulfamethazine. Int. Biodeterior. Biodegrad. 2014, 88, 29–36. [Google Scholar] [CrossRef]
- Puga, A.; Moreira, M.M.; Figueiredo, S.A.; Delerue-Matos, C.; Pazos, M.; Rosales, E.; Sanromán, M.Á. Electro-Fenton Degradation of a Ternary Pharmaceutical Mixture and Its Application in the Regeneration of Spent Biochar. J. Electroanal. Chem. 2021, 886, 115135. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Farhadian, M.; Solaimany Nazar, A.R.; Eskandari, P.; Esfahani, K.N. Investigation and Optimization of the Performance of Sono-Photo-Electro-Fenton Process for Removal of Acid Black 172 and Disperse Blue 56 from Polluted Water: Comparison of the Degradation Activity with Electro-Fenton-Based Processes. Int. J. Environ. Sci. Technol. 2022, 19, 1671–1682. [Google Scholar] [CrossRef]
- Sobczak, M.; Bujnowicz, S.; Bilińska, L. Fenton and Electro-Fenton Treatment for Industrial Textile Wastewater Recycling. Comparison of by-Products Removal, Biodegradability, Toxicity, and Re-Dyeing. Water Resour. Ind. 2024, 31, 100256. [Google Scholar] [CrossRef]
- El Jery, A.; Aldrdery, M.; Shirode, U.R.; Gavilán, J.C.O.; Elkhaleefa, A.; Sillanpää, M.; Sammen, S.S.; Tizkam, H.H. An Efficient Investigation and Machine Learning-Based Prediction of Decolorization of Wastewater by Using Zeolite Catalyst in Electro-Fenton Reaction. Catalysts 2023, 13, 1085. [Google Scholar] [CrossRef]
- Mansour, D.; Fourcade, F.; Bellakhal, N.; Dachraoui, M.; Hauchard, D.; Amrane, A. Biodegradability Improvement of Sulfamethazine Solutions by Means of an Electro-Fenton Process. Water Air Soil Pollut. 2012, 223, 2023–2034. [Google Scholar] [CrossRef]
- Mansour, D.; Fourcade, F.; Soutrel, I.; Hauchard, D.; Bellakhal, N.; Amrane, A. Relevance of a Combined Process Coupling Electro-Fenton and Biological Treatment for the Remediation of Sulfamethazine Solutions—Application to an Industrial Pharmaceutical Effluent. Comptes Rendus Chim. 2015, 18, 39–44. [Google Scholar] [CrossRef]
- Chi, C.; Zhou, X.; Wang, Y.; Gao, X.; Bai, J.; Guo, Y.; Ni, J. Treatment of Coking Wastewater Using a Needle Coke Electro-Fenton Cathode: Optimizing of COD, NH4+-N, and TOC Removal and Characterization of Pollutants. Water Sci. Technol. 2023, 88, 106–122. [Google Scholar] [CrossRef]
- Oturan, M.A. Outstanding Performances of the BDD Film Anode in Electro-Fenton Process: Applications and Comparative Performance. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100925. [Google Scholar] [CrossRef]
- García-Espinoza, J.D.; Robles, I.; Durán-Moreno, A.; Godínez, L.A. Study of Simultaneous Electro-Fenton and Adsorption Processes in a Reactor Containing Porous Carbon Electrodes and Particulate Activated Carbon. J. Electroanal. Chem. 2021, 895, 115476. [Google Scholar] [CrossRef]
- Al-Shomar, S.M.; Mansour, D.; Hedhili, F.; Aslam, A.; Mahmoud, S.A.; Akl, A.A.; Shaaban, E.R. Photocatalytic Treatment of Industrial Effluent Containing Clopidogrel Using Europium Doped TiO2 Thin Films under Solar Irradiation. React. Kinet. Mech. Catal. 2022, 135, 2813–2825. [Google Scholar] [CrossRef]
- Fedeila, M.; Hachaïchi-Sadouk, Z.; Bautista, L.F.; Simarro, R. Biodegradation of Clopidogrel Bisulfate by Pseudomonas Aeruginosa and Pseudomonas Putida Strains Isolated from Algerian Wastewater. J. Contam. Hydrol. 2023, 256, 104198. [Google Scholar] [CrossRef]
- El Faroudi, L.; El Jemli, Y.; Zari, R.; Barakat, A.; Ismael, M.K.; Abdelouahdi, K.; Solhy, A. Optimization of Photocatalytic Parameters Using Doehlert Experimental Design to Improve the Photodegradation of Orange G. J. Photochem. Photobiol. A Chem. 2023, 445, 115012. [Google Scholar] [CrossRef]
- Ben Khalifa, E.; Cecone, C.; Rzig, B.; Azaiez, S.; Cesano, F.; Malandrino, M.; Bracco, P.; Magnacca, G. Green Surface Modification of Polyvinyl Alcohol Fibers and Its Application for Dye Removal Using Doehlert Experimental Design. React. Funct. Polym. 2023, 193, 105763. [Google Scholar] [CrossRef]
- Mansour, D.; Alblawi, E.; Alsukaibi, A.K.D.; Al Shammari, B. Removal of Congo Red Dye by Electrochemical Advanced Oxidation Process: Optimization, Degradation Pathways, and Mineralization. Sustain. Water Resour. Manag. 2024, 10, 41. [Google Scholar] [CrossRef]
- Hammami, S.; Ouejhani, A.; Bellakhal, N.; Dachraoui, M. Application of Doehlert Matrix to Determine the Optimal Conditions of Electrochemical Treatment of Tannery Effluents. J. Hazard. Mater. 2009, 163, 251–258. [Google Scholar] [CrossRef]
- Mathieu, D.; Nony, J.; Phan-Tan-Luu, R. New Efficient Methodology for Research Using Optimal Design (NEMRODW) Software; LPRAI, University Aix-Marseille III: Marseille, France, 2000. [Google Scholar]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An Improved Grey Wolf Optimizer for Solving Engineering Problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Atmaca, E. Treatment of Landfill Leachate by Using Electro-Fenton Method. J. Hazard. Mater. 2009, 163, 109–114. [Google Scholar] [CrossRef]
- Dirany, A.; Sirés, I.; Oturan, N.; Oturan, M.A. Electrochemical Abatement of the Antibiotic Sulfamethoxazole from Water. Chemosphere 2010, 81, 594–602. [Google Scholar] [CrossRef]
- Oturan, M.A.; Edelahi, M.C.; Oturan, N.; El Kacemi, K.; Aaron, J.-J. Kinetics of Oxidative Degradation/Mineralization Pathways of the Phenylurea Herbicides Diuron, Monuron and Fenuron in Water during Application of the Electro-Fenton Process. Appl. Catal. B Environ. 2010, 97, 82–89. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y.; Koparal, A.S.; Oturan, M.A. Degradation of Picloram by the Electro-Fenton Process. J. Hazard. Mater. 2008, 153, 718–727. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Electro-Fenton Degradation of Synthetic Dyes. Water Res. 2009, 43, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.H.; Nguyen, H.C.; Le, T.S.; Dang, V.A.D.; Cao, T.H.; Le, C.K.; Dang, T.-D. Degradation of Glyphosate Herbicide by an Electro-Fenton Process Using Carbon Felt Cathode. Environ. Technol. 2021, 42, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Hammami, S.; Bellakhal, N.; Oturan, N.; Oturan, M.A.; Dachraoui, M. Degradation of Acid Orange 7 by Electrochemically Generated •OH Radicals in Acidic Aqueous Medium Using a Boron-Doped Diamond or Platinum Anode: A Mechanistic Study. Chemosphere 2008, 73, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Haidar, M.; Dirany, A.; Sirés, I.; Oturan, N.; Oturan, M.A. Electrochemical Degradation of the Antibiotic Sulfachloropyridazine by Hydroxyl Radicals Generated at a BDD Anode. Chemosphere 2013, 91, 1304–1309. [Google Scholar] [CrossRef]
- Oturan, N.; Wu, J.; Zhang, H.; Sharma, V.K.; Oturan, M.A. Electrocatalytic Destruction of the Antibiotic Tetracycline in Aqueous Medium by Electrochemical Advanced Oxidation Processes: Effect of Electrode Materials. Appl. Catal. B Environ. 2013, 140–141, 92–97. [Google Scholar] [CrossRef]
Experiment Number | Coded Variables | Real Variables | Results | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Current Intensity: | Fe2+ Concentration: | CPG Concentration: | Y (%) | |
U1 (A) | U2 (mM) | U3 (mM) | |||||
1 | 1 | 0 | 0 | 0.55 | 0.6 | 0.06 | 88.9 |
2 | −1 | 0 | 0 | 0.05 | 0.6 | 0.06 | 24.9 |
3 | 0 | 0.42 | 1.0 | 0.06 | 75.5 | ||
4 | 0 | 0.17 | 0.2 | 0.06 | 42.0 | ||
5 | 0 | 0.42 | 0.2 | 0.06 | 66.5 | ||
6 | 0 | 0.17 | 1.0 | 0.06 | 45.1 | ||
7 | 0.42 | 0.7 | 0.10 | 60.9 | |||
8 | 0.17 | 0.5 | 0.02 | 62.4 | |||
9 | 0.42 | 0.5 | 0.02 | 81.6 | |||
10 | 0 | 0.30 | 0.9 | 0.02 | 72.1 | ||
11 | 0.17 | 0.7 | 0.10 | 38.0 | |||
12 | 0 | 0.30 | 0.3 | 0.10 | 57.6 | ||
13 | 0 | 0 | 0 | 0.30 | 0.6 | 0.06 | 68.5 |
14 | 0 | 0 | 0 | 0.30 | 0.6 | 0.06 | 68.5 |
15 | 0 | 0 | 0 | 0.30 | 0.6 | 0.06 | 68.5 |
i | Term | bi | Std Error | t Ratio | Prob > |t| |
---|---|---|---|---|---|
0 | Constant | 68.5 | 2.300475 | 29.78 | <0.0001 |
1 | X1 | 30.5 | 2.300475 | 13.25 | 0.0002 |
2 | X2 | 1.5 | 1.992271 | 0.73 | 0.5049 |
3 | X3 | −12.2 | 1.992261 | −6.11 | 0.0036 |
4 | X1X2 | 3.4 | 4.601085 | 0.74 | 0.5002 |
5 | X1X3 | 1.1 | 5.144056 | 0.21 | 0.8466 |
6 | X2X3 | −5.7 | 5.143613 | −1.10 | 0.3331 |
7 | X1X1 | −11.6 | 3.63737 | −3.19 | 0.0332 |
8 | X2X2 | −11.1 | 3.637584 | −3.05 | 0.0380 |
9 | X3X3 | −3.9 | 3.450617 | −1.14 | 0.3189 |
Pharmaceutical Effluent | |
---|---|
pH | 6 |
Conductivity (µS cm−1) | 343 |
TSS (mg L−1) | 152 |
TDS (mg L−1) | 204.4 |
COD (mg L−1) | 1650 |
TOC (mg L−1) | 498 |
TNb (mg L−1) | 83.9 |
[CPG] (mg L−1) | 181.5 |
[NO3−] (mg L−1) | 49.1 |
[NO2−] (mg L−1) | 0.23 |
[PO43−] (mg L−1) | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, D.; Alblawi, E.; Alsukaibi, A.K.D.; Humaidi, J.; Tahraoui, H.; Shatat, M.; Teka, S.; Maisara, S.; Bellakhal, N.; Binous, H.; et al. Modeling and Optimization of Electrochemical Advanced Oxidation of Clopidogrel Using the Doehlert Experimental Design Combined with an Improved Grey Wolf Algorithm. Water 2024, 16, 1964. https://doi.org/10.3390/w16141964
Mansour D, Alblawi E, Alsukaibi AKD, Humaidi J, Tahraoui H, Shatat M, Teka S, Maisara S, Bellakhal N, Binous H, et al. Modeling and Optimization of Electrochemical Advanced Oxidation of Clopidogrel Using the Doehlert Experimental Design Combined with an Improved Grey Wolf Algorithm. Water. 2024; 16(14):1964. https://doi.org/10.3390/w16141964
Chicago/Turabian StyleMansour, Dorsaf, Eman Alblawi, Abdulmohsen Khalaf Dhahi Alsukaibi, Jamal Humaidi, Hichem Tahraoui, Manar Shatat, Safa Teka, Sawsan Maisara, Nizar Bellakhal, Housam Binous, and et al. 2024. "Modeling and Optimization of Electrochemical Advanced Oxidation of Clopidogrel Using the Doehlert Experimental Design Combined with an Improved Grey Wolf Algorithm" Water 16, no. 14: 1964. https://doi.org/10.3390/w16141964
APA StyleMansour, D., Alblawi, E., Alsukaibi, A. K. D., Humaidi, J., Tahraoui, H., Shatat, M., Teka, S., Maisara, S., Bellakhal, N., Binous, H., & Amrane, A. (2024). Modeling and Optimization of Electrochemical Advanced Oxidation of Clopidogrel Using the Doehlert Experimental Design Combined with an Improved Grey Wolf Algorithm. Water, 16(14), 1964. https://doi.org/10.3390/w16141964