Optimization of the Solubilization of Faecal Sludge through Microwave Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microwave Instrument
2.2. Optimization of FS Solubilization
2.3. Analytical Methods
2.4. Total Solids (TS) and Volatile Solids (VS)
2.5. Chemical Oxygen Demand (COD)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Microwave Treatment on FS Solids
3.2. Effects of Microwave Treatment on FS Volume
3.3. Effect of Microwave Treatment on Organic Matter Solubilization
3.4. Response Surface Modeling Results
3.5. Characterization of the Response Surface and Contour Plot
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO/UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into SDGs; WHO/UNICEF: Geneva, Switzerland, 2021. [Google Scholar]
- Brouckaert, C.J.; Foxon, K.M.; Wood, K. Modelling the Filling Rate of Pit Latrines. Water SA 2013, 39, 555–562. [Google Scholar] [CrossRef]
- Lansing, S.; Bowen, H.; Gregoire, K.; Klavon, K.; Moss, A.; Eaton, A.; Lai, Y.J.; Iwata, K. Methane Production for Sanitation Improvement in Haiti. Biomass Bioenergy 2016, 91, 288–295. [Google Scholar] [CrossRef]
- Semiyaga, S.; Okure, M.A.E.; Niwagaba, C.B.; Nyenje, P.M.; Kansiime, F. Dewaterability of Faecal Sludge and Its Implications on Faecal Sludge Management in Urban Slums: Faecal Sludge Pre-Treatment by Dewatering. Int. J. Environ. Sci. Technol. 2017, 14, 151–164. [Google Scholar] [CrossRef]
- Ngandjui Tchangoue, Y.A.; Djumyom Wafo, G.V.; Wanda, C.; Soh Kengne, E.; Kengne, I.M.; Kouam Fogue, S. Use of Moringa Oleifera Seed Extracts to Polish Effluents from Natural Systems Treating Faecal Sludge. Environ. Technol. 2019, 40, 2018–2026. [Google Scholar] [CrossRef]
- Gold, M.; Ddiba, D.I.W.; Seck, A.; Sekigongo, P.; Diene, A.; Diaw, S.; Niang, S.; Niwagaba, C.; Strande, L. Faecal Sludge as a Solid Industrial Fuel: A Pilot-Scale Study. J. Water Sanit. Hyg. Dev. 2017, 7, 243–251. [Google Scholar] [CrossRef]
- Çelebi, E.B.; Aksoy, A.; Sanin, F.D. Effects of Anaerobic Digestion Enhanced by Ultrasound Pretreatment on the Fuel Properties of Municipal Sludge. Environ. Sci. Pollut. Res. 2020, 27, 17350–17358. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Chang, S.W.; Ngo, H.H.; Guo, W.; Nghiem, L.D.; Banu, J.R.; Jeon, B.H.; Nguyen, D.D. Influence of Thermal Hydrolysis Pretreatment on Physicochemical Properties and Anaerobic Biodegradability of Waste Activated Sludge with Different Solids Content. Waste Manag. 2019, 85, 214–221. [Google Scholar] [CrossRef]
- Nazari, L.; Yuan, Z.; Santoro, D.; Sarathy, S.; Ho, D.; Batstone, D.; Xu, C.C.; Ray, M.B. Low-Temperature Thermal Pre-Treatment of Municipal Wastewater Sludge: Process Optimization and Effects on Solubilization and Anaerobic Degradation. Water Res. 2017, 113, 111–123. [Google Scholar] [CrossRef]
- Tulun, Ş.; Bilgin, M. Enhancement of Anaerobic Digestion of Waste Activated Sludge by Chemical Pretreatment. Fuel 2019, 254, 115671. [Google Scholar] [CrossRef]
- Serrano, A.; Siles, J.A.; Martín, M.A.; Chica, A.F.; Estévez-Pastor, F.S.; Toro-Baptista, E. Improvement of Anaerobic Digestion of Sewage Sludge through Microwave Pre-Treatment. J. Environ. Manag. 2016, 177, 231–239. [Google Scholar] [CrossRef]
- Yu, Q.; Lei, H.; Li, Z.; Li, H.; Chen, K. Physical and Chemical Properties of Waste-Activated Sludge after Microwave Treatment. Water Res. 2010, 44, 2841–2849. [Google Scholar] [CrossRef]
- Kavitha, S.; Rajesh Banu, J.; Kumar, G.; Kaliappan, S.; Yeom, I.T. Profitable Ultrasonic Assisted Microwave Disintegration of Sludge Biomass: Modelling of Biomethanation and Energy Parameter Analysis. Bioresour. Technol. 2018, 254, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Shen, Q.; Zhang, Q.; Zeng, Y.; Wang, W.; Mao, Y.; Ji, F. Microwave-Alkali Treatment with Water Elutriation to Enhance Waste Activated Sludge Solubilization for Carbon Sources and Nutrients Recovery. Chem. Eng. J. 2021, 421, 129727. [Google Scholar] [CrossRef]
- Bozkurt, Y.C.; Apul, O.G. Critical Review for Microwave Pretreatment of Waste-Activated Sludge Prior to Anaerobic Digestion. Curr. Opin. Environ. Sci. Health 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhancement of Batch Waste Activated Sludge Digestion by Microwave Pretreatment. Water Environ. Res. 2007, 79, 2304–2317. [Google Scholar] [CrossRef]
- Toreci, I.; Kennedy, K.J.; Droste, R.L. Evaluation of Continuous Mesophilic Anaerobic Sludge Digestion after High Temperature Microwave Pretreatment. Water Res. 2009, 43, 1273–1284. [Google Scholar] [CrossRef]
- Zheng, J.; Kennedy, K.J.; Eskicioglu, C. Effect of Low Temperature Microwave Pretreatment on Characteristics and Mesophilic Digestion of Primary Sludge. Environ. Technol. 2009, 30, 319–327. [Google Scholar] [CrossRef]
- Park, W.J.; Ahn, J.H.; Hwang, S.; Lee, C.K. Effect of Output Power, Target Temperature, and Solid Concentration on the Solubilization of Waste Activated Sludge Using Microwave Irradiation. Bioresour. Technol. 2010, 101 (Suppl. 1), S13–S16. [Google Scholar] [CrossRef]
- Ebenezer, A.V.; Kaliappan, S.; Adish Kumar, S.; Yeom, I.T.; Banu, J.R. Influence of Deflocculation on Microwave Disintegration and Anaerobic Biodegradability of Waste Activated Sludge. Bioresour. Technol. 2015, 185, 194–201. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M. Comparative Evaluation of Conventional and Microwave Hydrothermal Carbonization of Human Biowaste for Value Recovery. Water Sci. Technol. 2017, 75, 2852–2863. [Google Scholar] [CrossRef]
- Mawioo, P.M.; Hooijmans, C.; Garcia, H.; Brdjanovic, D. Microwave Treatment of Faecal Sludge from Intensively Used Toilets in the Slums of Nairobi, Kenya. J. Environ. Manag. 2016, 184, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Khuri, A.I. Response Surface Methodology and Its Applications in Agricultural and Food Sciences. Biom. Biostat. Int. J. 2017, 5, 155–163. [Google Scholar] [CrossRef]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R.B., Eaton, A.D., Rice, E.W., Eds.; American Public Health Association: Washington, DC, USA, 2017.
- Velkushanova, K.; Strande, L.; Ronteltap, M.; Koottatep, T.; Brdjanovic, D.; Buckley, C. Methods for Faecal Sludge Analysis; IWA Publishing: London, UK, 2021. [Google Scholar]
- Zuma, L.; Velkushanova, K.; Buckley, C. Chemical and Thermal Properties of VIP Latrine Sludge. Water SA 2015, 41, 534–540. [Google Scholar] [CrossRef]
- Bakare, B.F.; Foxon, K.M.; Brouckaert, C.J.; Buckley, C.A. Variation in VIP Latrine Sludge Contents. Water SA 2012, 38, 479–486. [Google Scholar] [CrossRef]
- Dodane, P.H.; Mbéguéré, M.; Sow, O.; Strande, L. Capital and Operating Costs of Full-Scale Fecal Sludge Management and Wastewater Treatment Systems in Dakar, Senegal. Environ. Sci. Technol. 2012, 46, 3705–3711. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.Y. Overview of Pretreatment Strategies for Enhancing Sewage Sludge Disintegration and Subsequent Anaerobic Digestion: Current Advances, Full-Scale Application and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Tang, B.; Yu, L.; Huang, S.; Luo, J.; Zhuo, Y. Energy Efficiency of Pre-Treating Excess Sewage Sludge with Microwave Irradiation. Bioresour. Technol. 2010, 101, 5092–5097. [Google Scholar] [CrossRef]
- Kuglarz, M.; Karakashev, D.; Angelidaki, I. Microwave and Thermal Pretreatment as Methods for Increasing the Biogas Potential of Secondary Sludge from Municipal Wastewater Treatment Plants. Bioresour. Technol. 2013, 134, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Doǧan, I.; Sanin, F.D. Alkaline Solubilization and Microwave Irradiation as a Combined Sludge Disintegration and Minimization Method. Water Res. 2009, 43, 2139–2148. [Google Scholar] [CrossRef]
- Kor-Bicakci, G.; Ubay-Cokgor, E.; Eskicioglu, C. Effect of Dewatered Sludge Microwave Pretreatment Temperature and Duration on Net Energy Generation and Biosolids Quality from Anaerobic Digestion. Energy 2019, 168, 782–795. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Impacts of Thermal Pre-Treatments on the Semi-Continuous Anaerobic Digestion of Waste Activated Sludge. Biochem. Eng. J. 2007, 34, 20–27. [Google Scholar] [CrossRef]
- Kavitha, S.; Rajesh Banu, J.; Vinoth Kumar, J.; Rajkumar, M. Improving the Biogas Production Performance of Municipal Waste Activated Sludge via Disperser Induced Microwave Disintegration. Bioresour. Technol. 2016, 217, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Sólyom, K.; Mato, R.B.; Pérez-Elvira, S.I.; Cocero, M.J. The Influence of the Energy Absorbed from Microwave Pretreatment on Biogas Production from Secondary Wastewater Sludge. Bioresour. Technol. 2011, 102, 10849–10854. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | S1 | S2 |
---|---|---|---|
TS | % | 21.00 ± 00 | 31.00 ± 0.00 |
VS | % | 13.00 ± 0.00 | 13.00 ± 0.00 |
VS/TS | % | 61.90 ± 0.00 | 41.94 ± 0.00 |
TCOD | g/kg TS | 1840.14 ± 327.34 | 711.02 ± 19.14 |
sCOD | g/kg TS | 405.06 ± 0.00 | 214.18 ± 5.63 |
sCOD/TCOD | % | 22.37 ± 3.98 | 30.12 ± 0.02 |
Microwave Treatment | S1 Sample | S2 Sample | |||||
---|---|---|---|---|---|---|---|
Power (W) | Time (s) | TS | VS | TS/VS | TS | VS | TS/VS |
0 | 0 | 21 ± 0.00 | 13 ± 0.00 | 62 ± 0.00 | 31 ± 0.00 | 13 ± 0.00 | 42 ± 0.00 |
450 | 60 | 23 ± 0.711 | 13 ± 0.00 | 58 ± 1.82 | 32 ± 0.00 | 13 ± 0.00 | 41 ± 0.00 |
450 | 120 | 24 ± 0.71 | 15 ± 0.35 | 63 ± 3.39 | 40 ± 0.71 | 17 ± 0.71 | 42 ± 2.54 |
450 | 180 | 28 ± 0.71 | 16 ± 0.00 | 58 ± 1.50 | 51 ± 2.83 | 22 ± 1.41 | 43 ± 0.38 |
630 | 60 | 24 ± 0.00 | 14 ± 0.00 | 58 ± 0.00 | 33 ± 0.71 | 14 ± 0.00 | 43 ± 0.94 |
630 | 120 | 27 ± 0.71 | 16 ± 0.00 | 60 ± 1.61 | 43 ± 0.71 | 18 ± 0.00 | 42 ± 0.70 |
630 | 180 | 32 ± 0.00 | 19 ± 0.00 | 59 ± 0.00 | 63 ± 0.71 | 271.41 | 43 ± 0.1.77 |
810 | 60 | 24 ± 0.00 | 14 ± 0.00 | 58 ± 0.00 | 33 ± 1.41 | 14 ± 0.00 | 42 ± 1.82 |
810 | 120 | 32 ± 0.00 | 19 ± 0.00 | 59 ± 0.00 | 47 ± 0.71 | 20 ± 0.71 | 42 ± 0.88 |
810 | 180 | 46 ± 1.41 | 26.5 ± 0.71 | 58 ± 3.31 | 74 ± 2.12 | 32 ± 0.71 | 43 ± 2.20 |
Time (min) | 540 W | 630 W | 720 W |
---|---|---|---|
0 | 214.18 ± 5.63 | 214.18 ± 5.63 | 214.18 ± 5.63 |
1 | 227.42 ± 1.10 | 224.48 ± 1.10 | 238 ± 3.32 |
3 | 236.60 ± 4.37 | 274.01 ± 3.31 | 232.92 ± 4.36 |
5 | 211.12 ± 1.14 | 183.75 ± 5.44 | 129.95 ± 2.24 |
Microwave Power (MP) | Contact Time | Coded Values | Response (Y) | ||||
---|---|---|---|---|---|---|---|
run.order | std.order | Watts | min | x1 | x2 | Block | sCOD/TCOD (%) |
1 | 2 | 540 | 1 | −1 | −1 | 1 | 32.0 |
2 | 13 | 630 | 3 | 0 | 0 | 1 | 36.2 |
3 | 7 | 540 | 5 | −1 | 1 | 1 | 29.5 |
4 | 4 | 720 | 1 | 1 | −1 | 1 | 34.5 |
5 | 10 | 720 | 5 | 1 | 1 | 1 | 18.1 |
6 | 6 | 720 | 1 | 1 | −1 | 1 | 33.8 |
7 | 12 | 720 | 5 | 1 | 1 | 1 | 17.9 |
8 | 1 | 540 | 1 | −1 | −1 | 1 | 32.7 |
9 | 8 | 540 | 5 | −1 | 1 | 1 | 29.1 |
10 | 5 | 720 | 1 | 1 | −1 | 1 | 34.2 |
11 | 9 | 540 | 5 | −1 | 1 | 1 | 29.3 |
12 | 3 | 540 | 1 | −1 | −1 | 1 | 32.9 |
13 | 11 | 720 | 5 | 1 | 1 | 1 | 18.6 |
1 | 12 | 630 | 5 | 0 | 1 | 2 | 26.2 |
2 | 6 | 720 | 3 | 1 | 0 | 2 | 32.4 |
3 | 4 | 630 | 5 | 0 | 1 | 2 | 27.3 |
4 | 1 | 540 | 3 | −1 | 0 | 2 | 32.9 |
5 | 8 | 630 | 5 | 0 | 1 | 2 | 26.4 |
6 | 2 | 720 | 3 | 1 | 0 | 2 | 34.2 |
7 | 9 | 540 | 3 | −1 | 0 | 2 | 34.7 |
8 | 14 | 630 | 3 | 0 | 0 | 2 | 39.6 |
9 | 11 | 630 | 1 | 0 | −1 | 2 | 33.6 |
10 | 5 | 540 | 3 | −1 | 0 | 2 | 33.8 |
11 | 13 | 630 | 3 | 0 | 0 | 2 | 38.9 |
12 | 7 | 630 | 1 | 0 | −1 | 2 | 32.4 |
13 | 3 | 630 | 1 | 0 | −1 | 2 | 32.7 |
14 | 10 | 720 | 3 | 1 | 0 | 2 | 33.3 |
Estimate | Std Error | t Value | pr (>|t|) | |
---|---|---|---|---|
Intercept | −1.143 × 102 | 7.1953 × 101 | −1.5886 | 0.18735 |
x1 | 4.185 × 10−1 | 2.2931 × 10−1 | 1.8250 | 0.14204 |
x2 | 1.8786 × 101 | 4.5223 | 4.1540 | 0.01421 * |
x1:x2 | −1.7886 × 10−2 | 6.2280 × 10−3 | −2.8719 | 0.04538 * |
x21 | −3.0382 × 10−4 | 1.8121 × 10−4 | −1.6766 | 0.16892 |
x22 | −1.5951 | 3.6694 × 10−1 | −4.3469 | 0.01219 * |
DF | Sum sq. | Mean sq. | F Value | pr (>F) | |
---|---|---|---|---|---|
FO (x1, x2) | 2 | 116.854 | 58.427 | 11.6230 | 0.022155 |
TWI (x1, x2) | 1 | 41.460 | 41.460 | 8.2478 | 0.04538 |
PQ (x1, x2) | 2 | 124.796 | 62.398 | 12.4130 | 0.01926 |
Residuals | 4 | 20.107 | 5.027 | ||
Lack of fit | 3 | 15.649 | 5.216 | 1.1699 | 0.57660 * |
Pure error | 1 | 4.459 | 4.459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mdolo, P.; Pocock, J.; Velkushanova, K. Optimization of the Solubilization of Faecal Sludge through Microwave Treatment. Water 2024, 16, 2094. https://doi.org/10.3390/w16152094
Mdolo P, Pocock J, Velkushanova K. Optimization of the Solubilization of Faecal Sludge through Microwave Treatment. Water. 2024; 16(15):2094. https://doi.org/10.3390/w16152094
Chicago/Turabian StyleMdolo, Principal, Jon Pocock, and Konstantina Velkushanova. 2024. "Optimization of the Solubilization of Faecal Sludge through Microwave Treatment" Water 16, no. 15: 2094. https://doi.org/10.3390/w16152094
APA StyleMdolo, P., Pocock, J., & Velkushanova, K. (2024). Optimization of the Solubilization of Faecal Sludge through Microwave Treatment. Water, 16(15), 2094. https://doi.org/10.3390/w16152094