Assessing the Relative and Combined Effect of Climate and Land Use on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Methodological Scheme
3.2. Quantification of Ecosystem Services
3.2.1. Net Primary Productivity
3.2.2. Water Yield
3.2.3. Soil Retention
3.2.4. Nutrition Purification
3.2.5. Ecosystem Services Value Quantified Methods
3.3. Statistical Methods
3.3.1. Correlation Analysis
3.3.2. Relative Importance and Combined Effect Index
3.4. Scenario Analysis
4. Results and Discussion
4.1. Characteristics of Ecosystem Services in the Yangtze River Economic Belt
4.1.1. Ecosystem Service Changes in the Yangtze River Economic Belt from 2001 to 2020
4.1.2. The Correlation between Ecosystem Services
4.2. Characteristics of Integrated Ecosystem Service Value in the Yangtze River Economic Belt
4.2.1. The Temporal and Spatial Changes in Ecosystem Service Value in the Yangtze River Economic Belt
4.2.2. The Integrated Ecosystem Service Value Changes in Different Provinces of the Yangtze River Economic Belt
4.3. Relative Importance and Combined Effect Analysis
4.3.1. Relative Importance
4.3.2. Combined Effects
5. Limitations and Uncertainties
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C.; Matson, P.A. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9455–9456. [Google Scholar] [CrossRef] [PubMed]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef] [PubMed]
- Daily, G.C.; Söderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.; Jansson, B.; Kautsky, N.; et al. Ecology. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Scholes, R.J. Climate change and ecosystem services. WIREs Clim. Chang. 2016, 7, 537–550. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Shaw, M.R.; Pendleton, L.; Cameron, D.R.; Morris, B.; Bachelet, D.; Klausmeyer, K.; MacKenzie, J.; Conklin, D.R.; Bratman, G.N.; Lenihan, J.; et al. The impact of climate change on California’s ecosystem services. Clim. Chang. 2011, 109, 465–484. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled impacts of climate and land use changes on regional ecosystem services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
- Carrasco-Valencia, L.; Vilca-Campana, K.; Iruri-Ramos, C.; Cárdenas-Pillco, B.; Ollero, A.; Chanove-Manrique, A. Effect of LULC Changes on Annual Water Yield in the Urban Section of the Chili River, Arequipa, Using the InVEST Model. Water 2024, 16, 664. [Google Scholar] [CrossRef]
- Sharma, R.; Rimal, B.; Baral, H.; Nehren, U.; Paudyal, K.; Sharma, S.; Rijal, S.; Ranpal, S.; Acharya, R.P.; Alenazy, A.A.; et al. Impact of Land Cover Change on Ecosystem Services in a Tropical Forested Landscape. Resources 2019, 8, 18. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Liu, J.; Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sust. 2013, 5, 47–52. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Zhang, X.; Li, C.; Hao, F. Multi-Remote Sensing Data Analysis for Identifying the Impact of Human Activities on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China. Water 2023, 15, 915. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environ. Dev. Sustain. 2023, 25, 6419–6448. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, Y.; Yin, G.; Zhang, X.; Li, C.; Wu, L.; Wang, X.; Hu, Q.; Hao, F. A collaborated framework to improve hydrologic ecosystem services management with sparse data in a semi-arid basin. Hydrol. Res. 2021, 52, 1159–1172. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Wang, S.; Wang, J. Assessing heterogeneity of trade-offs/synergies and values among ecosystem services in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 140, 109026. [Google Scholar] [CrossRef]
- Huang, G.; Feng, S.; Hu, C. A Study of the Spatiotemporal Evolution Patterns and Coupling Coordination between Ecosystem Service Values and Habitat Quality in Diverse Scenarios: The Case of Chengdu Metropolitan Area, China. Sustainability 2024, 16, 3741. [Google Scholar] [CrossRef]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.; Zhang, X.; Yin, G.; Fu, Y.; Wang, X.; Hu, Q.; Hao, F. Contributions of climate change to eco-compensation identification in the Yangtze River economic Belt, China. Ecol. Indic. 2021, 133, 108425. [Google Scholar] [CrossRef]
- Deng, L.; Li, Y.; Cao, Z.; Hao, R.; Wang, Z.; Zou, J.; Wu, Q.; Qiao, J. Revealing Impacts of Human Activities and Natural Factors on Dynamic Changes of Relationships among Ecosystem Services: A Case Study in the Huang-Huai-Hai Plain, China. Int. J. Environ. Res. Public Health 2022, 19, 10230. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, G.; Tan, Y.; Liu, J.; Hu, H. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, S.; Kang, Q.; Wang, Y. Exploring the land ecological security and its spatio-temporal changes in the Yangtze River Economic Belt of China, 2000–2020. Ecol. Indic. 2023, 154, 110645. [Google Scholar] [CrossRef]
- Wu, J.; Sun, W. Regional Integration and Sustainable Development in the Yangtze River Delta, China: Towards a Conceptual Framework and Research Agenda. Land 2023, 12, 470. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Q.; Zhang, J.; Fang, L.; Li, Y.; Zhang, L.; Wen, C. Convergence Analysis of the Overall Benefits of Returning Farmland into Forest in the Upper Yangtze River Basin, China. Sustainability 2023, 15, 1100. [Google Scholar] [CrossRef]
- Xu, F.; Wang, X.; Li, L. NPP and Vegetation Carbon Sink Capacity Estimation of Urban Green Space Using the Optimized CASA Model: A Case Study of Five Chinese Cities. Atmosphere 2023, 14, 1161. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST User’s Guide 3.9; The Natural Capital Project: Stanford, CA, USA, 2017. [Google Scholar]
- Kong, L.; Wu, T.; Xiao, Y.; Xu, W.; Zhang, X.; Daily, G.C.; Ouyang, Z. Natural capital investments in China undermined by reclamation for cropland. Nat. Ecol. Evol. 2023, 7, 1771–1777. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Global Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- He, Q.; Zeng, C.; Xie, P.; Liu, Y.; Zhang, M. An assessment of forest biomass carbon storage and ecological compensation based on surface area: A case study of Hubei Province, China. Ecol. Indic. 2018, 90, 392–400. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, R.; Zhao, J. Ecosystem services and their economic valuation. Chin. J. Appl. Ecol. 1999, 10, 635–640. (In Chinese) [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Benesty, J., Ed.; Springer: Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2009; pp. 1–4. ISBN 9783642002953. [Google Scholar]
- Wu, Y.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.; Yin, G. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China. Ecol. Eng. 2021, 159, 106083. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Z.; Sun, C.; Dewancker, B. The motivation and development impact of energy saving to sustainability in the construction of green campus: A case study of the Zhejiang University, China. Environ. Dev. Sustain. 2021, 23, 14068–14089. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, L.; Zhou, Q.; Song, Y. Does China’s Yangtze River Economic Belt policy impact on local ecosystem services? Sci. Total Environ. 2019, 676, 231–241. [Google Scholar] [CrossRef]
- Wang, H.; He, W.; Zhang, Z.; Liu, X.; Yang, Y.; Xue, H.; Xu, T.; Liu, K.; Xian, Y.; Liu, S.; et al. Spatio-temporal evolution mechanism and dynamic simulation of nitrogen and phosphorus pollution of the Yangtze River economic Belt in China. Environ. Pollut. 2024, 357, 124402. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Long, X.; Zhang, Q.; Liu, D.; Wu, H.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Luo, R.; Yang, S.; Zhou, Y.; Gao, P.; Zhang, T. Spatial Pattern Analysis of a Water-Related Ecosystem Service and Evaluation of the Grassland-Carrying Capacity of the Heihe River Basin under Land Use Change. Water 2021, 13, 2658. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R. Modeling the non-point source pollution risks by combing pollutant sources, precipitation, and landscape structure. Environ. Sci. Pollut. Res. 2019, 26, 11856–11863. [Google Scholar] [CrossRef]
- Salata, S.; Garnero, G.; Barbieri, C.; Giaimo, C. The Integration of Ecosystem Services in Planning: An Evaluation of the Nutrient Retention Model Using InVEST Software. Land 2017, 6, 48. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, H.; Liang, D.; Chen, Y.; Tian, P.; Xia, J.; Wang, H.; Lei, X. Ecological sustainability and its driving factor of urban agglomerations in the Yangtze River Economic Belt based on three-dimensional ecological footprint analysis. J. Clean. Prod. 2022, 330, 129802. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Li, Z. Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sens. 2023, 15, 430. [Google Scholar] [CrossRef]
Ecosystem Services | Ecosystem Service Values Quantification Methods |
---|---|
NPP | Alternative market approach: the NPP is used to characterize the carbon fixation and oxygen release function by photosynthesis by vegetation, and the benefit can be calculated by the cost of afforestation [31]. |
WY | Direct market approach: the first list of residents’ average water prices in major cities of the Yangtze River Economic Belt in 2018 is taken as the accounting method parameters [12]. |
SR | Alternative market approach: using the method of Ouyang’s [32] study, which indicates that the economic benefits of SR mainly come from the reduction in the siltation effect of sediment. |
NDR-P | Alternative market approach: the NDR-P mainly refers to the non-point source pollution treatment cost of phosphorus per unit of weight of the lake [12]. |
Land Use 2001 | Land Use 2020 | |
---|---|---|
Climate 2001–2005 | Scenario 1 | Scenario 2 |
Climate 2016–2020 | Scenario 3 | Scenario 4 |
WY | SR | NDR-P | NPP | |
---|---|---|---|---|
WY | 1 | 0.276 | −0.121 | 0.003 |
SR | 0.276 | 1 | 0.013 | 0.105 |
NDR-P | −0.121 | 0.013 | 1 | −0.132 |
NPP | 0.003 | 0.105 | −0.132 | 1 |
Zhejiang | Yunnan | Sichuan | Jiangxi | Hunan | Hubei | Guizhou | Anhui | Shanghai | Chongqing | Jiangsu | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NPP/SR | 0.032 | 0.098 | 0.065 | 0.012 | 0.028 | 0.051 | 0.097 | 0.011 | 0.125 | 0.074 | 0.102 | |
NPP/WY | 0.001 | 0.006 | 0.035 | 0.003 | 0.001 | 0.041 | 0.023 | 0.011 | 0.051 | 0.022 | 0.053 | |
NPP/NDR-P | −0.048 | −0.066 | 0.102 | −0.058 | −0.046 | 0.068 | 0.077 | 0.034 | 0.134 | 0.071 | 0.088 | |
WY/SR | 0.024 | 0.044 | 0.201 | 0.078 | 0.014 | 0.151 | 0.068 | 0.053 | 0.051 | 0.125 | 0.135 | |
WY/NDR-P | −0.028 | −0.011 | −0.111 | −0.012 | −0.050 | −0.112 | −0.064 | 0.124 | 0.042 | 0.031 | 0.041 | |
SR/NDR-P | 0.012 | 0.026 | 0.013 | 0.039 | 0.021 | 0.019 | 0.038 | 0.027 | 0.011 | 0.041 | 0.046 |
2001–2005 | 2006–2010 | 2011–2015 | 2016–2020 | Average | |
---|---|---|---|---|---|
Shanghai | 0.29 | 0.22 | 0.23 | 0.25 | 0.25 |
Jiangsu | 2.01 | 2.01 | 1.86 | 2.13 | 2.01 |
Zhejiang | 3.02 | 3.16 | 3.6 | 3.91 | 3.42 |
Anhui | 3.29 | 3.12 | 3.15 | 3.75 | 3.33 |
Hubei | 4.32 | 4.16 | 4.02 | 4.37 | 4.22 |
Hunan | 6.47 | 5.87 | 5.81 | 6.6 | 6.19 |
Jiangxi | 5.98 | 5.25 | 5.73 | 6.29 | 5.81 |
Chongqing | 1.91 | 2.01 | 1.84 | 1.98 | 1.93 |
Yunnan | 10.1 | 9.46 | 8.42 | 9.37 | 9.34 |
Guizhou | 4.56 | 4.32 | 3.92 | 4.86 | 4.41 |
Sichuan | 9.53 | 9.72 | 9.79 | 9.84 | 9.72 |
ESs | Effects | Shanghai | Jiangsu | Zhejiang | Anhui | Hubei | Hunan | Jiangxi | Chongqing | Yunnan | Guizhou | Sichuan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ESV | Synergistic | 31 | 18 | 26 | 41 | 56 | 74 | 48 | 42 | 86 | 47 | 35 |
Inhibitory | 53 | 68 | 55 | 48 | 42 | 26 | 43 | 51 | 14 | 43 | 38 | |
No effects | 16 | 14 | 19 | 11 | 2 | 0 | 9 | 7 | 0 | 10 | 27 | |
NPP | Synergistic | 21 | 29 | 40 | 36 | 52 | 45 | 40 | 32 | 81 | 33 | 39 |
Inhibitory | 67 | 70 | 56 | 64 | 46 | 37 | 48 | 66 | 18 | 59 | 36 | |
No effects | 12 | 1 | 4 | 0 | 2 | 18 | 12 | 2 | 1 | 8 | 25 | |
WY | Synergistic | 43 | 38 | 34 | 32 | 62 | 68 | 48 | 48 | 83 | 49 | 42 |
Inhibitory | 42 | 55 | 61 | 67 | 34 | 32 | 46 | 52 | 17 | 48 | 37 | |
No effects | 15 | 7 | 5 | 1 | 4 | 0 | 6 | 0 | 0 | 3 | 21 | |
SR | Synergistic | 79 | 66 | 68 | 69 | 73 | 68 | 74 | 64 | 72 | 62 | 72 |
Inhibitory | 12 | 13 | 8 | 11 | 16 | 20 | 25 | 21 | 12 | 28 | 13 | |
No effects | 9 | 21 | 24 | 20 | 11 | 12 | 1 | 15 | 16 | 10 | 15 | |
NDR-P | Synergistic | 74 | 53 | 62 | 64 | 40 | 46 | 51 | 59 | 33 | 53 | 51 |
Inhibitory | 26 | 47 | 38 | 32 | 57 | 38 | 42 | 41 | 63 | 44 | 38 | |
No effects | 0 | 0 | 0 | 4 | 3 | 16 | 7 | 0 | 4 | 3 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yao, M.; Tang, Y.; Li, W.; Yu, T.; Ma, W.; Geng, X. Assessing the Relative and Combined Effect of Climate and Land Use on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China. Water 2024, 16, 2126. https://doi.org/10.3390/w16152126
Wu Y, Yao M, Tang Y, Li W, Yu T, Ma W, Geng X. Assessing the Relative and Combined Effect of Climate and Land Use on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China. Water. 2024; 16(15):2126. https://doi.org/10.3390/w16152126
Chicago/Turabian StyleWu, Yifan, Minglei Yao, Yangbo Tang, Wei Li, Tao Yu, Wenlue Ma, and Xiaojun Geng. 2024. "Assessing the Relative and Combined Effect of Climate and Land Use on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China" Water 16, no. 15: 2126. https://doi.org/10.3390/w16152126
APA StyleWu, Y., Yao, M., Tang, Y., Li, W., Yu, T., Ma, W., & Geng, X. (2024). Assessing the Relative and Combined Effect of Climate and Land Use on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China. Water, 16(15), 2126. https://doi.org/10.3390/w16152126