Effects of Frozen Layer on Composite Erosion of Snowmelt and Rainfall in the Typical Black Soil of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Design
2.3. Methods
3. Results
3.1. Characteristics of SER
3.2. Hydraulic Parameters Affecting Soil Erosion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sartori, M.; Ferrari, E.; M’Barek, R.; Philippidis, G.; Boysen-Urban, K.; Borrelli, P.; Montanarella, L.; Panagos, P. Remaining loyal to our soil: A prospective integrated assessment of soil erosion on global food security. Ecol. Econ. 2024, 219, 108103. [Google Scholar] [CrossRef]
- Ayoubi, S.; Rabiee, S.; Mosaddeghi, M.; Abdi, M.; Abbaszadeh, F. Soil erosion and properties as affected by fire and time after fire events in steep rangelands using 137 Cs technique. Arab. J. Geosci. 2021, 14, 113. [Google Scholar] [CrossRef]
- Zhang, K.; Bai, Y.; Wang, X.; Xu, X. Modeling the sediment transport capacity on non–erodible frozen soil slope of overland flow. Catena 2022, 212, 106102. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, H. Snowmelt erosion: A review. Earth-Sci. Rev. 2024, 250, 104704. [Google Scholar] [CrossRef]
- Froese, J.C.; Cruse, R.M.; Ghaffarzadeh, M. Erosion mechanics of soils with an impermeable subsurface layer. Soil Sci. Soc. Am. J. 1999, 63, 1836–1841. [Google Scholar] [CrossRef]
- Oygarden, L. Rill and gully development during an extreme winter runoff event in Norway. Catena 2003, 50, 217–242. [Google Scholar] [CrossRef]
- Chen, C.; Ban, Y.; Lei, T.; Feng, R.; Gao, Y. Water flow velocity over frozen and nonfrozen black soil slopes. Hydrol. Process. 2018, 32, 2231–2238. [Google Scholar] [CrossRef]
- Ban, Y.; Lei, T.; Chen, C.; Yin, Z.; Qian, D.F. Meltwater erosion process of frozen soil as affected by thawed depth under concentrated flow in high altitude and cold regions. Earth Surf. Proc. Land. 2017, 42, 2139–2146. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Wang, H.; Lei, N.; Li, P.; Wang, J. Interactive effects of rainfall intensity and initial thaw depth on slope erosion. Sustainability 2022, 14, 3172. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, J.; Liu, G.; Fan, H.; Wang, B.; Shen, H. Characteristics of soil erosion on sloping farmlands and key fields for studying compound soil erosion caused by multi-forces in Mollisol region of Northeast China. Bull. Soil Water Conserv. 2019, 39, 314–319. [Google Scholar] [CrossRef]
- Sun, B.; Xiao, J.; Li, Z.; Ma, B.; Zhang, L.; Huang, Y.; Bai, L. An analysis of soil detachment capacity under freeze-thaw conditions using the Taguchi method. Catena 2018, 162, 100–107. [Google Scholar] [CrossRef]
- Gao, X.; Shi, X.; Lei, T. Influence of thawed soil depth on rainfall erosion of frozen bare meadow soil in the Qinghai–Tibet Plateau. Earth Surf. Proc. Land. 2021, 46, 1953–1963. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Yang, R.; Wang, T.; Li, P. Experimental study of freeze–thaw/water compound erosion and hydraulic conditions as affected by thawed depth on loessal slope. Front. Environ. Sci. 2020, 8, 609594. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Liu, Y.; Hou, J.; Li, Z.; Ren, Z.; Hinkelmann, R. Experimental investigation of freeze–thaw meltwater compound erosion and runoff energy consumption on loessal slopes. Catena 2020, 185, 104310. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Lindstrom, M.J.; Benoit, G.R.; Young, R.A.; Wilts, A. Runoff and soil erosion during spring thaw in the northern US Corn Belt. J. Soil Water Conserv. 2000, 55, 487–494. [Google Scholar]
- Gao, X.; Li, F.; Chen, C.; Ban, Y.; Gao, Y. Effects of thawed depth on the sediment transport capacity by melt water on partially thawed black soil slope. Land Degrad. Dev. 2019, 30, 84–93. [Google Scholar] [CrossRef]
- Chen, C. Erosion Mechanism and Its Modeling of Cultivated Black Soil Slopes Affected by Thawed Depth; China Agricultural University: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Li, Z.; Lu, K.; Ding, W. Experimental study on dynamic processes of soil erosion on loess slope. J. Soil Water Conserv. 2002, 16, 5–7+49. (In Chinese) [Google Scholar] [CrossRef]
- Ban, Y.; Lei, T. Impact of frozen layer and rock fragment on sediment transport capacity on frozen-stony slopes. Hydrol. Process. 2022, 36, e14627. [Google Scholar] [CrossRef]
- Wu, Y.; Ouyang, W.; Hao, Z.; Yang, B.; Wang, L. Snowmelt water drives higher soil erosion than rainfall water in a mid–high latitude upland watershed. J. Hydrol. 2018, 556, 438–448. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, F.; Li, H.; Cheng, D.; Sun, B. The influence mechanism of freeze–thaw on soil erosion: A Review. Water 2021, 13, 1010. [Google Scholar] [CrossRef]
- Larsen, K.; Jonasson, S.; Michelsen, A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl. Soil Ecol. 2002, 21, 187–195. [Google Scholar] [CrossRef]
- Iwata, Y.; Yanai, Y.; Yazaki, T.; Hirota, T. Effects of a snow-compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: A field-scale paired-plot experiment. J. Hydrol. 2018, 567, 280–289. [Google Scholar] [CrossRef]
- Chen, C.; Lei, T.; Ban, Y. Influence of slope, flow rate, and thawed depth on soil detachment rate in partially thawed black soils. J. Hydrol. 2021, 603, 127009. [Google Scholar] [CrossRef]
- Ban, Y.; Lei, T.; Liu, Z.; Chen, C. Comparison of rill flow velocity over frozen and thawed slopes with electrolyte tracer method. J. Hydrol. 2016, 534, 630–637. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, F.; Zhao, L.; Mo, S.; Qin, Q.; Geng, H.; Zhao, Y. Impacts of seepage flow and soil thaw depth on hill slope snowmelt erosion in Chinese Mollisol region. J. Appl. Ecol. 2021, 32, 4177–4185. [Google Scholar]
- Li, G.; Zheng, F.; Lu, J.; An, J. The influence of rainfall and terrain factors on soil erosion process on black soil slopes. Agric. Mach. J. Mech. Eng. 2015, 46, 147–154. (In Chinese) [Google Scholar]
- An, J.; Zheng, F.; Lu, J.; Li, G. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Sci. 2012, 177, 517–526. [Google Scholar] [CrossRef]
- Ding, B.; Zhang, J.; Zheng, P.; Li, Z.; Wang, Y.; Jia, G.; Yu, X. Water security assessment for effective water resource management based on multi-temporal blue and green water footprints. J. Hydrol. 2024, 632, 130761. [Google Scholar] [CrossRef]
- Yang, H.; Wei, C.; Sun, G.; Tao, X.; Wang, Y. Responses of soil and ammonia nitrogen loss rates to hydraulic parameters under different slope gradients and rainfall intensities. Water 2024, 16, 230. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, F.; Zhang, X.; Wilson, G.V.; Qin, C.; He, C.; Zhang, J. Discrimination of soil losses between ridge and furrow in longitudinal ridge–tillage under simulated upslope inflow and rainfall. Soil Till. Res. 2020, 198, 104541. [Google Scholar] [CrossRef]
- Li, G.; Zheng, F.; Lu, J.; Xu, X.; Hu, W.; Han, Y. Inflow rate impact on hillslope erosion processes and flow hydrodynamics. Soil Sci. Soc. Am. J. 2016, 80, 711–719. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, W.; Xiao, P.; Liu, G.; Yang, C. Study on the interaction and superposition effect of multi–dynamic erosion in the soft sandstone area of the Yellow River basin. J. Hydrol. 2022, 53, 109–116. [Google Scholar] [CrossRef]
- Tian, P.; Xu, X.; Pan, C.; Hsu, K.; Yang, T. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes. J. Hydrol. 2017, 548, 24–39. [Google Scholar] [CrossRef]
Treatment | FSL | FSLUN | SR Discharge (L min−1) | RF Intensity (mm h−1) |
---|---|---|---|---|
FSL–SR0.34 | √ | 0.34 | ||
FSLUN–SR0.34 | √ | 0.34 | ||
FSL–RF80 | √ | 80 | ||
FSLUN–RF80 | √ | 80 | ||
FSL–SRI0.34–80 | √ | 0.34 | 80 | |
FSLUN–SRI0.34–80 | √ | 0.34 | 80 | |
FSL–SR0.5 | √ | 0.5 | ||
FSLUN–SR0.5 | √ | 0.5 | ||
FSL–RF120 | √ | 120 | ||
FSLUN–RF120 | √ | 120 | ||
FSL–SRI0.5–120 | √ | 0.5 | 120 | |
FSLUN–SRI0.5–120 | √ | 0.5 | 120 | |
FSL–SR0.67 | √ | 0.67 | ||
FSLUN–SR0.67 | √ | 0.67 | ||
FSL–RF160 | √ | 160 | ||
FSLUN–RF160 | √ | 160 | ||
FSL–SRI0.67–160 | √ | 0.67 | 160 | |
FSLUN–SRI0.67–160 | √ | 0.67 | 160 |
Author | Soil Type | Slope Gradient | Force | Discharge/Intensity | Thawing Depth (cm) | Increased Erosion |
---|---|---|---|---|---|---|
Wang (2021) [26] | Black soil | 5° | runoff | 1 L min−1, 4 L min−1 | 5, 10 | 10–13.5%, 15.4–37.1% |
Wang (2020) [13] | Loessial soil | 15° | rainfall | 0.6 mm min−1, 0.9 mm min−1, 1.2 mm min−1 | 2, 4, 6 | 41.1–122.7%, 45.5–315.1%, 83.4–430.1% |
Sharratt (2000) [15] | Hattie clay, Barnes loam | 7% | rainfall | 96 mm h−1 | 1, 2, 5 | 100%, 50% |
Author | Soil Type | Slope Gradient (°) | Force | Discharge/Intensity | Equation |
---|---|---|---|---|---|
An (2012) [28] | Loessial soil | 5, 7.5, 10 | rainfall | 50, 75, 100 mm h−1 | SER = 0.43w − 0.0395 |
Li (2016) [32] | Black soil | 5, 10 | runoff–rainfall | 50 mm h−1, 50–300 L min−1 | SER = 0.047(w − 0.611) |
Wang (2020) [13] | Loessial soil | 15 | rainfall | 0.6, 0.9, 1.2 mm min−1 | SER = 784.18w0.61 |
Wang (2020) [14] | Loessial soil | 15 | runoff | 1, 2, 4 L min−1 | SER = 2.65 × ln(E − 4.01) |
Factor | FSL | FSLUN | ||
---|---|---|---|---|
PF (%) | p-Values | PF (%) | p-Values | |
SR | 12.58 | <0.01 | 17.56 | <0.01 |
RF | 25.77 | <0.01 | 45.55 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Q.; Zhou, L.; Fan, H.; Huang, D.; Yang, D.; Liu, H. Effects of Frozen Layer on Composite Erosion of Snowmelt and Rainfall in the Typical Black Soil of Northeast China. Water 2024, 16, 2131. https://doi.org/10.3390/w16152131
Bai Q, Zhou L, Fan H, Huang D, Yang D, Liu H. Effects of Frozen Layer on Composite Erosion of Snowmelt and Rainfall in the Typical Black Soil of Northeast China. Water. 2024; 16(15):2131. https://doi.org/10.3390/w16152131
Chicago/Turabian StyleBai, Qing, Lili Zhou, Haoming Fan, Donghao Huang, Defeng Yang, and Hui Liu. 2024. "Effects of Frozen Layer on Composite Erosion of Snowmelt and Rainfall in the Typical Black Soil of Northeast China" Water 16, no. 15: 2131. https://doi.org/10.3390/w16152131
APA StyleBai, Q., Zhou, L., Fan, H., Huang, D., Yang, D., & Liu, H. (2024). Effects of Frozen Layer on Composite Erosion of Snowmelt and Rainfall in the Typical Black Soil of Northeast China. Water, 16(15), 2131. https://doi.org/10.3390/w16152131