Comprehensive Assessment of the Relationship between Metal Contamination Distribution and Human Health Risk: Case Study of Groundwater in Marituba Landfill, Pará, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Analysis of Groundwater Samples
2.3. Groundwater Quality Index (GWQI)
2.4. Heavy Metal Pollution Index (HPI)
2.5. Heavy Metals Assessment Index (HEI)
2.6. Risk Assessment to Human Health
2.7. Interrelationship between Water Quality Parameters and Pollution Source Identification
3. Results and Discussion
3.1. Heavy Metals in Groundwater
3.2. Groundwater Quality Index
3.3. Heavy Metal Pollution Index
3.4. Risk Assessment to Human Health
3.5. Interrelationship between Water Quality Parameters and Pollution Source Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites of China. Sci. Total Environ. 2016, 569–570, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Publio, M.C.M.; Delgado, J.F.; Pierri, B.S.; Lima, L.d.S.; Gaylarde, C.C.; Neto, J.A.B.; Neves, C.V.; Fonseca, E.M. Assessment of groundwater contamination in the Southeastern coast of Brazil: A potential threat to human health in Marica Municipality. Eng 2023, 4, 2640–2655. [Google Scholar] [CrossRef]
- Asare-donkor, N.K.; Boadu, T.A.; Adimado, A.A. Evaluation of grounwater and surface water quality and human risk assessment for trace metals in human settlements around the Bosomtwe Crater Lake in Ghana. SpringerPlus 2016, 5, 1812. [Google Scholar] [CrossRef] [PubMed]
- Brindha, K.; Paul, R.; Walter, J.; Tan, M.L.; Singh, M.K. Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environ. Geochem. Health 2020, 42, 3819–3839. [Google Scholar] [CrossRef]
- Bakyayita, G.K.; Norrström, A.C.; Kulabako, R.N. Assessment of Levels, speciation, and Toxicity of Trace Metal Contaminants in Selected Shallow Groundwater Sources, Surface Runoff, Wastewater, and Surface Water from Designated Streams in Lake Victoria Basin, Uganda. J. Environ. Public Health 2019, 2019, 6734017. [Google Scholar] [CrossRef]
- Triassi, M.; Cerino, P.; Montuori, P.; Pizzolante, A.; Trama, U.; Nicodemo, F.; D’auria, J.L.; De Vita, S.; De Rosa, E.; Limone, A. Heavy Metals in Groundwater of Southern Italy: Occurrence and Potential Adverse Effects on the Environment and Human Health. Int. J. Environ. Res. Public Health 2023, 20, 1693. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Qiu, Z.; Zhang, J.; Liu, W.; Liu, C.; Zeng, G. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China. Int. J. Environ. Res. Public Health 2017, 14, 768. [Google Scholar] [CrossRef] [PubMed]
- Castilhos, A.B., Jr.; Medeiros, P.A.; Firta, I.N.; Lupatini, G.; da Silva, J.D. Principais Processos de Degradação de Resíduos Sólidos Urbanos; ABES: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia. Sustainability 2021, 13, 14021. [Google Scholar] [CrossRef]
- World Organization of Health—WHO. Guidelines for Drinking Water Quality, 2nd ed.; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Crossgrove, J.; Zheng, W. Manganese Toxicity upon overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef]
- Pejman, A.; Bidhendi, G.N.; Ardestani, M.; Saeedi, M.; Baghvand, A. Fractionation of heavy metals in sediments and assessment of their availability risk: A case study in the northwestern of Persian Gulf. Mar. Pollut. Bull. 2017, 114, 881–887. [Google Scholar] [CrossRef]
- Hussain, S.; Habib-Ur-Rehman, M.; Khanam, T.; Sheer, A.; Kebin, Z.; Jianjun, Y. Health Risk Assessment of Different Heavy Metals Dissolved in Drinking Water. Int. J. Environ. Res. Public Health 2019, 16, 1737. [Google Scholar] [CrossRef] [PubMed]
- El-Naqa, A. Environmental impact assessment using rapid impact assessment matrix (RIAM) for Russeifa landfill, Jordan. Environ. Geol. 2004, 47, 632–639. [Google Scholar] [CrossRef]
- Mutileni, N.; Mudau, M.; Edokpay, J.N. Water quality, geochemistry and human health risk of grounwater in the Vyeboom region, Limpopo province, South Africa. Sci. Rep. 2023, 13, 19071. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Chen, J.; Tong, Q.; Zeng, S. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system. Water Sci. Technol. 2007, 56, 47–56. [Google Scholar] [CrossRef]
- Instituto Água e Saneamento. Available online: https://www.aguaesaneamento.org.br/municipios-e-saneamento/pa/marituba#:~:text=32%2C13%25%20da%20popla%C3%A7%C3%A3o%20%C3%A9,n%C3%A3o%20t%C3%AAm%20acesso%20%C3%A0%20%C3%A1gua (accessed on 21 March 2021).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Cidades: Marituba. Rio de Janeiro. Available online: https://www.cidades.ibge.gov.br (accessed on 4 March 2021).
- Matta, M.A.S. Fundamentos Hidrogeológicos para a Gestão Integrada de Recursos Hídricos da Região Metropolitana de Belém/Ananindeua—Pará, Brasil. Ph.D. Thesis, Federal University of Pará, Belém, Brazil, 2002. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo, 2010. Available online: https://www.censo2010.ibge.gov.br (accessed on 21 March 2021).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Malha Municipal 2018; IBGE: Rio de Janeiro, Brazil, 2018. Available online: https://www.ibge.gov.br/geociencias/todos-os-produtos-geociencias/15774-malhas.html?=&t=o-que-e (accessed on 23 July 2022).
- ANA—Agência nacional de águas. Sistema Nacional de Informações em Recursos Hídricos (SNIRH); ANA-MMA: Brasília, Brazil, 2012. Available online: https://www.snirh.gov.br/hidroweb/apresentacao (accessed on 24 July 2020).
- Guama Tratamento de Residuos. Aterros Sanitarios. 2018. Available online: https://www.guamaambiental.com.br/aterros (accessed on 10 May 2021).
- Collection Sites of Water and Landfill. Department of Carthographic. SAAMB. Evandro Chagas Institute. 2022.
- Instituto Brasileiro de Geografia e Estatística (IBGE). Administrative Politicals, Limits and Divisions. 2021. Available online: https://brasilemsintese.ibge.gov.br/territorio/divisao-politica.html (accessed on 5 June 2022).
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Mohan, S.V.; Nithila, P.; Reddy, S.J. Estimation of heavy metals in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1996, 31, 283–289. [Google Scholar] [CrossRef]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Environmental Protection Agency U.S. Available online: https://www.epa.gov/ (accessed on 10 October 2022).
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2018, 650, 2004–2012. [Google Scholar] [CrossRef]
- Saleh, H. Heavy Metals; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Edet, A.; Offiong, O. Evaluation of Water Quality Pollution Indices for Heavy Metal Contamination Monitoring. A Study Case from Akpabuyo-Odukpani Area, Lower Cross River Basin (Southeastern Nigeria). GeoJournal 2002, 57, 295–304. [Google Scholar] [CrossRef]
- Goher, M.; Hassan, A.; Abdel-Moniem, I.; Fahmy, A. El-Sayed S Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt. J. Aquat. Res. 2014, 40, 225–233. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.H.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef] [PubMed]
- CalEPA, Office of Environmental Health Hazard Assessment (OEHHA) Acute, 8-hour and Chronic Reference Exposure Level (REL). Summary as of November. 2019. Available online: https://oehha.ca.gov/media/CPFs042909.pdf (accessed on 15 July 2023).
- Hadzi, G.Y.; Essumang, D.K.; Adjei, J.K. Distribution and Risk Assessment of Heavy Metals in Surface Water from Pristine Environments and Major Mining Areas in Ghana. J. Health Pollut. 2015, 5, 86–99. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part, E; Supplemental Guidance for Dermal Risk Assessment); EPA/540/R/99/Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2004. [Google Scholar]
- BBS (Bangladesh Bureau of Statistics). Health and Morbidity Status Survey; Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning; Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015. Available online: www.bbs.gov.bd (accessed on 10 June 2024).
- Zakir, H.; Sharmin, S.; Akter, A.; Rahman, S. Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area, Bangladesh. Environ. Adv. 2020, 2, 100005. [Google Scholar] [CrossRef]
- Brazil. Ministry of Health. Minister’s Office GM/MS n. 88. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2021/prt0888_07_05_2021.htmlhtml (accessed on 10 June 2021).
- European Comission (UE). Directive (UE) 2020/2184. Available online: https://eur-lex.europa.eu/PT/legal-content/summary/good-quality-water-in-europe-eu-water-directive.html (accessed on 15 June 2021).
- American Public Health Association—APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Estados Unidos: Washington, DC, USA, 2017. [Google Scholar]
- Jain, C.K.; Singhal, D.C.; Sharma, M.K. Metal Pollution Assessment of Sediment and Water in the River Hindon, India. Environ. Monit. Assess. 2005, 105, 193–207. [Google Scholar] [CrossRef]
- Rondeau, V.; Commenges, D.; Dartigues, J.F.; Gadda, H.J. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: An 8-year follow-up study. Am. J. Epidemiol. 2000, 152, 59–66. [Google Scholar] [CrossRef]
- Barabasz, W.; Albinska, D.; Jaskowska, M.; Lipiec, J. Ecotoxicology of Aluminium. Pol. J. Environ. Stud. 2002, 11, 199–203. [Google Scholar]
- Kumar, V.; Pandita, S.; Sidhu, G.P.S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2020, 262, 127810. [Google Scholar] [CrossRef]
- Ejaz, H.; Copper, W.M.; Lang, W.W. Toxicity Links to Pathogenesis of Alzheimer’s Disease and Therapeutics Approaches. Int. J. Mol. Sci. 2021, 7660, 20. [Google Scholar]
- Agency for Toxic Substances and Disease Registry—ATSDR. Toxicological Profile of Heavy Metals; Agency for Toxic Substances and Disease Registry—ATSDR: Atlanta, GA, USA, 2023. [Google Scholar]
- Essien, J.P.; Ikpe, D.I.; Inam, E.D.; Okon, A.O.; Ebong, G.A.; Benson, N.U. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS ONE 2022, 17, e0263279. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Song, K.; He, X.; Peng, Y.; Liu, D.; Liu, J. Identification of Groundwater Pollution Characteristics and Health Risk Assessment of a Landfill in a Low Permeability Area. Int. J. Environ. Res. Public Health 2021, 18, 7690. [Google Scholar] [CrossRef] [PubMed]
- Przydatek, G.; Kanownik, W. Impact os small municipal solid waste landfill on groundwater quality. Environ. Monit. Assess. 2019, 191, 169. [Google Scholar] [CrossRef] [PubMed]
- Njoku, P.O.; Edokpayi, J.N.; Odiyo, J.O. Health and environmental risks of residents living close to a landfill: A case study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2125. [Google Scholar] [CrossRef] [PubMed]
- de Queiroz, T.K.L.; Câmara, V.d.M.; Naka, K.S.; Mendes, L.d.C.d.S.; Chagas, B.R.; de Jesus, I.M.; Meyer, A.; Lima, M.d.O. Human Health Risk Assessment Is Associated with the Consumption of Metal-Contaminated Groundwater around the Marituba Landfill, Amazonia, Brazil. Int. J. Environ. Res. Public Health 2022, 19, 13865. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Maya, S.; Prakash, T.; Madhu, K.D.; Goli, D. Multifaceted effects of aluminium in neurodegenerative diseases: A review. Biomed. Pharmacother. 2016, 83, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.K.; Singh, S.R.; Ahmad, N.; Das, B.; Sharma, O.C.; Rathe, J.Á.; Bhat, S.K. Genetic divergence analysis of pear using qualitative traits as per DUS guidelines. Indian J. Hortic. 2012, 69, 432–434. [Google Scholar]
- Mishra, S.; Kumar, A.; Yadav, S.; Singhal, M.K. Assessment of heavy metal contamination in water of Kali River using principle component and cluster analysis, India. Sustain. Water Resour. Manag. 2018, 4, 573. [Google Scholar] [CrossRef]
Parameters | Assigned Weight () | Weight Relative () | () [30] | () [30] | Cancer Slope Factor (CSF) Oral | Cancer Slope Factor (CSF) Dermal |
---|---|---|---|---|---|---|
pH | 3 | 0.045 | - | - | - | - |
Temperature | 3 | 0.045 | - | - | - | - |
Electric conductivity | 3 | 0.045 | - | - | - | - |
As | 5 | 0.075 | 3.0 × 10−4 | 1.2 × 10−4 | 1.5 × 10 | 3.6 × 10 |
Al | 4 | 0.059 | 4.0 × 10−4 | 7.0 × 10−4 | NE | NE |
Ba | 2 | 0.030 | 4.6 × 10−2 | 4.8 × 10−3 | NE | NE |
Co | 2 | 0.030 | 2.0 × 10−2 | 1.6 × 10−2 | 9.8 × 10 | 9.8 × 10 |
Cd | 5 | 0.075 | 1.0 × 10−3 | 1.0 × 10−5 | 5.0 × 10−1 | 2.0 × 101 |
Cu | 2 | 0.030 | 4.0 × 10−2 | 1.2 × 10−2 | 1.7 × 10−2 | 4.2 × 101 |
Cr | 4 | 0.059 | 3.0 × 10−3 | 6.0 × 10−5 | 4.2 × 10−1 | 20.0 × 10 |
Fe | 4 | 0.059 | 8.4 × 10 | 7.0 × 10−2 | NE | NE |
Hg | 5 | 0.075 | 3.0 × 10−4 | 2.1 × 10−5 | NE | NE |
Ni | 5 | 0.075 | 2.0 × 10−2 | 5.4 × 10−3 | 9.1 × 10−1 | 9.8 × 10 |
Pb | 5 | 0.075 | 3.5 × 10−3 | 5.2 × 10−4 | 8.5 × 10−3 | 8.5 × 10−3 |
Sb | 4 | 0.059 | 5.0 × 10−3 | 4.9 × 10−3 | NE | NE |
Se | 4 | 0.059 | 5.0 × 10−3 | 2.0 × 10−2 | NE | NE |
U | 5 | 0.075 | 5.4 × 10−3 | 7.0 × 10−5 | NE | NE |
Zn | 2 | 0.030 | 3.0 × 10−3 | 6.0 × 10−2 | NE | NE |
Index | Value in Period | Classification | |
---|---|---|---|
Rainfall | Drought | ||
GWQI | 13.729 | 14.766 | GWQI ≥ 300 (Not drinkable) 200 ≤ GWQI < 300 (Too bad) 100 ≤ GWQI < 200 (Bad) 50 ≤ GWQI < 100 (Good) GWQI < 50 (Great) |
HPI | 6.180 | 7.176 | HPI < 100 (Low level of contamination) HPI > 100 (High levels of contamination) |
HEI | 0.876 | 1.036 | HEI > 20 (High contamination) 10 < HEI < 20 (Medium contamination) HEI < 10 (Low contamination) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, R.C.d.O.; de Deus, R.J.A.; Silva, M.M.C.; Faial, K.R.F.; Medeiros, A.C.; Mendes, R.d.A. Comprehensive Assessment of the Relationship between Metal Contamination Distribution and Human Health Risk: Case Study of Groundwater in Marituba Landfill, Pará, Brazil. Water 2024, 16, 2146. https://doi.org/10.3390/w16152146
Soares RCdO, de Deus RJA, Silva MMC, Faial KRF, Medeiros AC, Mendes RdA. Comprehensive Assessment of the Relationship between Metal Contamination Distribution and Human Health Risk: Case Study of Groundwater in Marituba Landfill, Pará, Brazil. Water. 2024; 16(15):2146. https://doi.org/10.3390/w16152146
Chicago/Turabian StyleSoares, Roberta C. de O., Ricardo Jorge A. de Deus, Monia M. C. Silva, Kleber Raimundo F. Faial, Adaelson C. Medeiros, and Rosivaldo de A. Mendes. 2024. "Comprehensive Assessment of the Relationship between Metal Contamination Distribution and Human Health Risk: Case Study of Groundwater in Marituba Landfill, Pará, Brazil" Water 16, no. 15: 2146. https://doi.org/10.3390/w16152146