Efficient Adsorption of Pollutants from Aqueous Solutions by Hydrochar-Based Hierarchical Porous Carbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the HCM and C-HCM
2.2. Preparation of the HPCM and C-HPCM
2.3. Characterization Methods
2.4. Water Decontamination Assays
3. Results
3.1. Characterization of the Carbonaceous Materials
3.2. Heavy Metal and Dye Adsorption Study
3.2.1. Preliminary Tests
3.2.2. Batch Experiment on Pb2+ Removal Using C−HPCM
3.2.3. Batch Experiment on MB Removal Using HPCM
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Elsayed, I.; Nayanathara, R.M.O.; Song, X.; Shmulsky, R.; Hassan, E.B. Biobased Hierarchically Porous Carbon Featuring Micron-Sized Honeycomb Architecture for CO2 Capture and Water Remediation. J. Environ. Chem. Eng. 2022, 10, 107460. [Google Scholar] [CrossRef]
- Ma, H.; Xu, Z.; Wang, W.; Gao, X.; Ma, H. Adsorption and Regeneration of Leaf-Based Biochar for: P-Nitrophenol Adsorption from Aqueous Solution. RSC Adv. 2019, 9, 39282–39293. [Google Scholar] [CrossRef]
- Qiu, G.; Miao, Z.; Guo, Y.; Xu, J.; Jia, W.; Zhang, Y.; Guo, F.; Wu, J. Bamboo-Based Hierarchical Porous Carbon for High-Performance Supercapacitors: The Role of Different Components. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129575. [Google Scholar] [CrossRef]
- Thomas, P.; Lai, C.W.; Bin Johan, M.R. Recent Developments in Biomass-Derived Carbon as a Potential Sustainable Material for Super-Capacitor-Based Energy Storage and Environmental Applications. J. Anal. Appl. Pyrolysis 2019, 140, 54–85. [Google Scholar] [CrossRef]
- Wang, K.; Ye, Q.; Shen, Y.; Wang, Y.; Hong, Q.; Zhang, C.; Liu, M.; Wang, H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. Membranes 2023, 13, 194. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Li, L.; Liu, F.; Li, J. Biochar/Kevlar Nanofiber Mixed Matrix Nanofiltration Membranes with Enhanced Dye/Salt Separation Performance. Membranes 2021, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zhou, Y.; Ren, X.; Wan, J.; Du, Y.; Wu, G.; Ma, F. Biowaste-Based Porous Carbon for Supercapacitor: The Influence of Preparation Processes on Structure and Performance. J. Colloid Interface Sci. 2019, 535, 276–286. [Google Scholar] [CrossRef]
- Güleç, F.; Williams, O.; Kostas, E.T.; Samson, A.; Stevens, L.A.; Lester, E. A Comprehensive Comparative Study on Methylene Blue Removal from Aqueous Solution Using Biochars Produced from Rapeseed, Whitewood, and Seaweed via Different Thermal Conversion Technologies. Fuel 2022, 330, 125428. [Google Scholar] [CrossRef]
- Patil, C.S.; Gunjal, D.B.; Naik, V.M.; Waghmare, R.D.; Dongale, T.D.; Kurkuri, M.D.; Kolekar, G.B.; Gore, A.H. Sustainable Conversion of Waste Tea Biomass into Versatile Activated Carbon: Application in Quick, Continuous, and Pressure Filtration of Miscellaneous Pollutants. Biomass Convers. Biorefinery 2023, 13, 12975–12988. [Google Scholar] [CrossRef]
- Cai, L.F.; Zhan, J.M.; Liang, J.; Yang, L.; Yin, J. Structural Control of a Novel Hierarchical Porous Carbon Material and Its Adsorption Properties. Sci. Rep. 2022, 12, 3118. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Z.; Wang, X.; Zhang, C.; Jiang, R. Supercapacitive Performance of Porous Carbon Materials Derived from Tree Leaves. J. Renew. Sustain. Energy 2017, 9, 044105. [Google Scholar] [CrossRef]
- Huang, J.; Liang, Y.; Hu, H.; Liu, S.; Cai, Y.; Dong, H.; Zheng, M.; Xiao, Y.; Liu, Y. Ultrahigh-Surface-Area Hierarchical Porous Carbon from Chitosan: Acetic Acid Mediated Efficient Synthesis and Its Application in Superior Supercapacitors. J. Mater. Chem. A 2017, 5, 24775–24781. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Z.; Wang, X.; Liu, Z.; Liu, X. A Simple Route for Hierarchically Porous Carbon Derived from Corn Straw for Supercapacitor Application. J. Renew. Sustain. Energy 2019, 11, 024102. [Google Scholar] [CrossRef]
- Petrović, J.; Perišić, N.; Maksimović, J.D.; Maksimović, V.; Kragović, M.; Stojanović, M.; Laušević, M.; Mihajlović, M. Hydrothermal Conversion of Grape Pomace: Detailed Characterization of Obtained Hydrochar and Liquid Phase. J. Anal. Appl. Pyrolysis 2016, 118, 267–277. [Google Scholar] [CrossRef]
- Petrović, J.; Ercegović, M.; Simić, M.; Koprivica, M.; Dimitrijević, J.; Jovanović, A.; Janković Pantić, J. Hydrothermal Carbonization of Waste Biomass: A Review of Hydrochar Preparation and Environmental Application. Processes 2024, 12, 207. [Google Scholar] [CrossRef]
- Kojić, M.; Mihajlović, M.; Marinović-Cincović, M.; Petrović, J.; Katnić, Đ.; Krstić, A.; Butulija, S.; Onjia, A. Calcium-Pyro-Hydrochar Derived from the Spent Mushroom Substrate as a Functional Sorbent of Pb2+ and Cd2+ from Aqueous Solutions. Waste Manag. Res. 2022, 40, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Petrović, J.; Ercegović, M.; Simić, M.; Kalderis, D.; Koprivica, M.; Milojković, J.; Radulović, D. Novel Mg-Doped Pyro-Hydrochars as Methylene Blue Adsorbents: Adsorption Behavior and Mechanism. J. Mol. Liq. 2023, 376, 121424. [Google Scholar] [CrossRef]
- Mihajlović, M.; Petrović, J.; Stojanović, M.; Milojković, J.; Lopičić, Z.; Koprivica, M.; Lačnjevac, Č. Hydrochars, Perspective Adsorbents of Heavy Metals: A Review of the Current State of Studies. Zast. Mater. 2016, 57, 488–495. [Google Scholar] [CrossRef]
- Ge, Q.; Li, P.; Liu, M.; Xiao, G.M.; Xiao, Z.Q.; Mao, J.W.; Gai, X.K. Removal of Methylene Blue by Porous Biochar Obtained by KOH Activation from Bamboo Biochar. Bioresour. Bioprocess. 2023, 10, 51. [Google Scholar] [CrossRef]
- Koprivica, M.; Simić, M.; Petrović, J.; Ercegović, M.; Dimitrijević, J. Evaluation of Adsorption Efficiency on Pb(II) Ions Removal Using Alkali-Modified Hydrochar from Paulownia Leaves. Processes 2023, 11, 1327. [Google Scholar] [CrossRef]
- Petrović, J.T.; Stojanović, M.D.; Milojković, J.V.; Petrović, M.S.; Šoštarić, T.D.; Laušević, M.D.; Mihajlović, M.L. Alkali Modified Hydrochar of Grape Pomace as a Perspective Adsorbent of Pb2+ from Aqueous Solution. J. Environ. Manag. 2016, 182, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, M.; Gu, W.; Falco, C.; Titirici, M.M.; Fuertes, A.B.; Yushin, G. Hydrothermal Synthesis of Microalgae-Derived Microporous Carbons for Electrochemical Capacitors. J. Power Sources 2014, 267, 26–32. [Google Scholar] [CrossRef]
- Guo, N.; Li, M.; Sun, X.; Wang, F.; Yang, R. Enzymatic Hydrolysis Lignin Derived Hierarchical Porous Carbon for Supercapacitors in Ionic Liquids with High Power and Energy Densities. Green Chem. 2017, 19, 2595–2602. [Google Scholar] [CrossRef]
- Georgiou, E.; Mihajlović, M.; Petrović, J.; Anastopoulos, I.; Dosche, C.; Pashalidis, I.; Kalderis, D. Single-Stage Production of Miscanthus Hydrochar at Low Severity Conditions and Application as Adsorbent of Copper and Ammonium Ions. Bioresour. Technol. 2021, 337, 125458. [Google Scholar] [CrossRef] [PubMed]
- Mihajlović, M.; Petrović, J.; Maletić, S.; Isakovski, M.K.; Stojanović, M.; Lopičić, Z.; Trifunović, S. Hydrothermal Carbonization of Miscanthus × giganteus: Structural and Fuel Properties of Hydrochars and Organic Profile with the Ecotoxicological Assessment of the Liquid Phase. Energy Convers. Manag. 2018, 159, 254–263. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 1999; ISBN 978-0-12-598920-6. [Google Scholar]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET Equation Applicable to Microporous Adsorbents? In Characterization of Porous Solids VII, Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26–28 May 2005; Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2007; Volume 160, pp. 49–56. [Google Scholar] [CrossRef]
- Dubinin, M.M. Progress in Surface and Membrane Science; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Lagergren Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Z. Chem. Ind. Kolloide 1907, 2, 15. [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Closure to “Kinetics of Adsorption on Carbon from Solution”. J. Sanit. Eng. Div. 1963, 89, 53–55. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1368. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 384–470. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Saning, A.; Herou, S.; Dechtrirat, D.; Ieosakulrat, C.; Pakawatpanurut, P.; Kaowphong, S.; Thanachayanont, C.; Titirici, M.M.; Chuenchom, L. Green and Sustainable Zero-Waste Conversion of Water Hyacinth (Eichhornia crassipes) into Superior Magnetic Carbon Composite Adsorbents and Supercapacitor Electrodes. RSC Adv. 2019, 9, 24248–24258. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Sun, J.; Xie, A.; He, J.; Li, C.; Yan, Y. Designed Preparation of 3D Hierarchically Porous Carbon Material via Solvothermal Route and in Situ Activation for Ultrahigh-Efficiency Dye Removal: Adsorption Isotherm, Kinetics and Thermodynamics Characteristics. RSC Adv. 2016, 6, 3446–3457. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. Compounds Containing the Carbonyl Group. In The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Elsevier: Amsterdam, The Netherlands, 1991; Volume 3, pp. 117–154. [Google Scholar] [CrossRef]
- Yin, W.; Dai, D.; Hou, J.; Wang, S.; Wu, X.; Wang, X. Hierarchical Porous Biochar-Based Functional Materials Derived from Biowaste for Pb(II) Removal. Appl. Surf. Sci. 2019, 465, 297–302. [Google Scholar] [CrossRef]
- Wang, Q.; He, D.; Li, C.; Sun, Z.; Mu, J. Honeycomb-like Cork Activated Carbon Modified with Carbon Dots for High-Efficient Adsorption of Pb(II) and Rhodamine B. Ind. Crops Prod. 2023, 196, 116485. [Google Scholar] [CrossRef]
- Caccin, M.; Giorgi, M.; Giacobbo, F.; Da Ros, M.; Besozzi, L.; Mariani, M. Removal of Lead (II) from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Coconut Shell. Desalin. Water Treat. 2016, 57, 4557–4575. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Ding, G.; Wang, B.; Chen, L.; Zhao, S. Simultaneous Adsorption of Methyl Red and Methylene Blue onto Biochar and an Equilibrium Modeling at High Concentration. Chemosphere 2016, 163, 283–289. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Das, R.K.; Brar, S.K.; Ramirez, A.A.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Adsorption of Methylene Blue on Biochar Microparticles Derived from Different Waste Materials. Waste Manag. 2016, 49, 537–544. [Google Scholar] [CrossRef]
- Wang, Q.; Lai, Z.; Luo, C.; Zhang, J.; Cao, X.; Liu, J.; Mu, J. Honeycomb-like Activated Carbon with Microporous Nanosheets Structure Prepared from Waste Biomass Cork for Highly Efficient Dye Wastewater Treatment. J. Hazard. Mater. 2021, 416, 125896. [Google Scholar] [CrossRef] [PubMed]
- Behazin, E.; Ogunsona, E.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M.; Anyia, A.O. Biochars for Composites. BioResources 2016, 11, 1334–1348. [Google Scholar]
- Zhang, G.; Liu, X.; Wang, L.; Fu, H. Recent Advances of Biomass Derived Carbon-Based Materials for Efficient Electrochemical Energy Devices. J. Mater. Chem. A 2022, 10, 9277–9307. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Cao, H.; Hu, D.; Chen, X.; Guan, Y.; Tang, J.; Gao, H. Ultra-Efficient Sorption of Cu2+ and Pb2+ Ions by Light Biochar Derived from Medulla Tetrapanacis. Bioresour. Technol. 2019, 291, 121818. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Cheng, H.; Xu, C.; Sheng, G.D. Surface Characteristics of Crop-Residue-Derived Black Carbon and Lead(II) Adsorption. Water Res. 2008, 42, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, A.A.; Li, J. Removal of Pb(II) from Aqueous Solution by Using Biochars Derived from Sugar Cane Bagasse and Orange Peel. J. Taiwan Inst. Chem. Eng. 2016, 61, 367–375. [Google Scholar] [CrossRef]
- Youssef, A.M.; Ahmed, A.I.; Amin, M.I.; El-Banna, U.A. Adsorption of Lead by Activated Carbon Developed from Rice Husk. Desalin. Water Treat. 2015, 54, 1694–1707. [Google Scholar] [CrossRef]
(wt %) | ||||||
---|---|---|---|---|---|---|
Sample | Yield | Ash | Elemental Composition * | |||
C | H | O ** | N | |||
HCM | 49.2 ± 0.6 | 1.49 ± 0.01 | 65.4 ± 0.04 | 5.3 ± 0.04 | 27.4 ± 0.04 | 0.37 ± 0.04 |
C-HCM | 46.6 ± 0.7 | 2.05 ± 0.02 | 52.6 ± 0.03 | 7.1 ± 0.04 | 38.0 ± 0.02 | 0.22 ± 0.03 |
HPCM | 31.7 ± 0.3 | 2.54 ± 0.02 | 81.2 ± 0.07 | 1.9 ± 0.01 | 13.6 ± 0.01 | 0.80 ± 0.01 |
C-HPCM | 15.9 ± 0.4 | 4.62 ± 0.03 | 73.2 + 0.09 | 3.0 ± 0.05 | 18.7 ± 0.08 | 0.42 ± 0.02 |
Sample | SSABET (m2 g−1) | Vmic-DR (cm3 g−1) | Vmeso (cm3 g−1) | Vtot (cm3 g−1) |
---|---|---|---|---|
HCM | 7.2 | 0.003 | 0.021 | 0.031 |
C-HCM | 4.3 | 0.002 | 0.021 | 0.029 |
HPCM | 705 | 0.271 | 0.031 | 0.295 |
C-HPCM | 1040 | 0.404 | 0.040 | 0.438 |
qeq.exp (mg g−1) | 70.5 | ||
Pseudo-First-Order Model | Pseudo-Second-Order Model | ||
qeq.cal (mg g−1) | 65.4 | qeq.cal (mg g−1) | 69.2 |
k1 (min−1) | 0.09 | k2 (g mg−1 min−1) | 0.002 |
R2 | 0.900 | R2 | 0.955 |
Weber–Morris diffusion Model | |||
Kdiff1 (mg g−1 min−1/2) | 1.64 | Kdiff2 (mg g−1 min−1/2) | 0.188 |
C1 (m g−1) | 44.5 | C2 (m g−1) | 63.3 |
R2 | 0.854 | R2 | 0.994 |
Langmuir Model | Freundlich Model | Sips Model | |||
---|---|---|---|---|---|
qm (mg g−1) | 155.6 | KF (mg(1−1/n) L1/n g−1) | 2.32 | qm (mg g−1) | 141.2 |
KL (L mg−1) | 0.006 | n | 1.43 | Ks (L mg−1) | 0.009 |
ns | 1.12 | ||||
R2 | 0.994 | R2 | 0.988 | R2 | 0.993 |
qeq.exp (mg g−1) | 274.4 | ||
Pseudo-First-Order Model | Pseudo-Second-Order Model | ||
qeq.cal (mg g−1) | 260.4 | qeq.cal (mg g−1) | 272.4 |
k1 (min−1) | 0.063 | k2 (g mg−1 min−1) | 0.0004 |
R2 | 0.964 | R2 | 0.996 |
Weber–Morris diffusion Model | |||
Kdiff1 (mg g−1 min−1/2) | 7.81 | Kdiff2 (mg g−1 min−1/2) | 0.149 |
C1 (m g−1) | 158.1 | C2 (m g−1) | 268.7 |
R2 | 0.868 | R2 | 0.997 |
Langmuir Model | Freundlich Model | Sips Model | |||
---|---|---|---|---|---|
qm (mg g−1) | 316.0 | KF (mg(1−1/n) L1/n g−1) | 151.1 | qm (mg g−1) | 685.9 |
KL (L mg−1) | 3.10 | n | 5.79 | Ks (L mg−1) | 0.0002 |
ns | 0.174 | ||||
R2 | 0.836 | R2 | 0.981 | R2 | 0.977 |
Adsorbents | Contaminants | qm * (mg g−1) | SSABET (m2 g−1) | Reference |
---|---|---|---|---|
Activated cork | Pb2+ | 74.3 | 1853 | [1] |
Coconut shell | Pb2+ | |||
GCN816G | Pb2+ | 32.08 | N/A | [40] |
GCN1240 | Pb2+ | 92.39 | 1150 | [40] |
Cork-based CAC@CDs-BPEI | Pb2+ | 231.48 | 1089 | [39] |
C−HPCM | Pb2+ | 155.6 | 1038 | This study |
Soybean cake | Pb2+ | 133.6 | N/A | [38] |
Rice husk | Pb2+ | 261.2 | 1040 | [50] |
Bamboo | MB | 67.46 | 562 | [19] |
Activated cork | MB | 887.7 | 1853 | [1] |
HPCM | MB | 316.0 | 705 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ercegović, M.; Petrović, J.; Koprivica, M.; Simić, M.; Grubišić, M.; Vuković, N.; Krstić, J. Efficient Adsorption of Pollutants from Aqueous Solutions by Hydrochar-Based Hierarchical Porous Carbons. Water 2024, 16, 2177. https://doi.org/10.3390/w16152177
Ercegović M, Petrović J, Koprivica M, Simić M, Grubišić M, Vuković N, Krstić J. Efficient Adsorption of Pollutants from Aqueous Solutions by Hydrochar-Based Hierarchical Porous Carbons. Water. 2024; 16(15):2177. https://doi.org/10.3390/w16152177
Chicago/Turabian StyleErcegović, Marija, Jelena Petrović, Marija Koprivica, Marija Simić, Mirko Grubišić, Nikola Vuković, and Jugoslav Krstić. 2024. "Efficient Adsorption of Pollutants from Aqueous Solutions by Hydrochar-Based Hierarchical Porous Carbons" Water 16, no. 15: 2177. https://doi.org/10.3390/w16152177
APA StyleErcegović, M., Petrović, J., Koprivica, M., Simić, M., Grubišić, M., Vuković, N., & Krstić, J. (2024). Efficient Adsorption of Pollutants from Aqueous Solutions by Hydrochar-Based Hierarchical Porous Carbons. Water, 16(15), 2177. https://doi.org/10.3390/w16152177