Predicting Arsenic Contamination in Groundwater: A Comparative Analysis of Machine Learning Models in Coastal Floodplains and Inland Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrogeochemical Data Collecting and Processing
2.3. Multicollinearity Assessment
2.4. Feature Selections for Models
2.5. Adopted Modeling Approach and Validation
3. Results and Discussion
3.1. Hydro-Chemical and Geological Characteristics of Groundwater in the Hetao Basin and Bangladesh
3.2. Performance of Estimation Models
3.3. Application of the Binary Classification Models for Groundwater Arsenic Contamination Probability in Hetao Basin and Bangladesh
3.4. Mechanisms Controlling Geogenic Groundwater as Contamination in Hetao Basin and Bangladesh
4. Conclusions and Recommendations
- Continual calibration and validation: Regularly calibrate and validate prediction models using diverse datasets to enhance the accuracy and reliability of groundwater As predictions. This iterative process ensures that models remain accurate as new data become available.
- Implement comprehensive monitoring programs: Implement comprehensive monitoring programs that include regular sampling and analysis of hydro-chemical and geological parameters to provide up-to-date data for model inputs. This approach helps in maintaining the accuracy of predictive models and allows for early detection of potential contamination events.
- Strategic management plans: Develop and implement strategic management plans based on predictive model outcomes to mitigate As contamination in high-risk areas. Policies should focus on sustainable groundwater management and remediation efforts tailored to the specific conditions indicated by model predictions.
- Academic research integration: Foster continuous academic research that integrates hydrogeology, geochemistry, and data science to comprehensively address the complex challenge of groundwater As contamination. This multidisciplinary approach can lead to innovative solutions and improvements in prediction models.
- Public health initiatives: Strengthen public health initiatives by disseminating information on As risks and providing resources for safe water alternatives in affected regions. Public awareness and education are crucial for minimizing exposure and protecting health.
- International collaboration: Encourage international collaboration to share knowledge, data, and resources, enhancing the global capacity to effectively predict and manage groundwater As contamination. Collaboration can lead to the development of more robust models and shared strategies for mitigation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Argos, M.; Kalra, T.; Rathouz, P.J.; Chen, Y.; Pierce, B.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R.; et al. Arsenic Exposure from Drinking Water, and All-Cause and Chronic-Disease Mortalities in Bangladesh (HEALS): A Prospective Cohort Study. Lancet 2010, 376, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, U.K.; Biswas, B.K.; Chowdhury, T.R.; Samanta, G.; Mandal, B.K.; Basu, G.C.; Chanda, C.R.; Lodh, D.; Saha, K.C.; Mukherjee, S.K.; et al. Groundwater Arsenic Contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 2000, 108, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.M. Arsenic in Groundwater and Health Problems in Bangladesh. Water Res. 2000, 34, 304–310. [Google Scholar] [CrossRef]
- Roberts, L.C.; Hug, S.J.; Dittmar, J.; Voegelin, A.; Saha, G.C.; Ali, M.A.; Badruzzaman, A.B.M.; Kretzschmar, R. Spatial Distribution and Temporal Variability of Arsenic in Irrigated Rice Fields in Bangladesh. 1. Irrigation Water. Environ. Sci. Technol. 2007, 41, 5960–5966. [Google Scholar] [CrossRef] [PubMed]
- Concha, G.; Nermell, B.; Vahter, M. Spatial and Temporal Variations in Arsenic Exposure via Drinking-Water in Northern Argentina. J. Health Popul. Nutr. 2006, 24, 317–326. [Google Scholar] [PubMed]
- Dittmar, J.; Voegelin, A.; Roberts, L.C.; Hug, S.J.; Saha, G.C.; Ali, M.A.; Badruzzaman, A.B.M.; Kretzschmar, R. Spatial Distribution and Temporal Variability of Arsenic in Irrigated Rice Fields in Bangladesh. 2. Paddy Soil. Environ. Sci. Technol. 2007, 41, 5967–5972. [Google Scholar] [CrossRef] [PubMed]
- Mahimairaja, S.; Bolan, N.S.; Adriano, D.C.; Robinson, B. Arsenic Contamination and Its Risk Management in Complex Environmental Settings. Adv. Agron. 2005, 86, 1–82. [Google Scholar]
- Ayotte, J.D.; Nolan, B.T.; Nuckols, J.R.; Cantor, K.P.; Robinson, G.R.; Baris, D.; Hayes, L.; Karagas, M.; Bress, W.; Silverman, D.T.; et al. Modeling the Probability of Arsenic in Groundwater in New England as a Tool for Exposure Assessment. Environ. Sci. Technol. 2006, 40, 3578–3585. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K. Arsenic in the Geosphere Meets the Anthroposphere. In Proceedings of the Understanding the Geological and Medical Interface of Arsenic, As 2012—4th International Congress: Arsenic in the Environment, Cairns, Australia, 22–27 July 2012. [Google Scholar]
- Smedley, P.; Zhang, M.; Zhang, G.; Luo, Z. Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 2003, 18, 1453–1477. [Google Scholar] [CrossRef]
- Wang, Y.; Pi, K.; Fendorf, S.; Deng, Y.; Xie, X. Sedimentogenesis and Hydrobiogeochemistry of High Arsenic Late Pleistocene-Holocene Aquifer Systems. Earth-Sci. Rev. 2019, 189, 79–98. [Google Scholar] [CrossRef]
- Harvey, C.F.; Swartz, C.H.; Badruzzaman, A.B.M.; Keon-Blute, N.; Yu, W.; Ali, M.A.; Jay, J.; Beckie, R.; Niedan, V.; Brabander, D.; et al. Arsenic Mobility and Groundwater Extraction in Bangladesh. Science 2002, 298, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- van Geen, A.; Bostick, B.C.; Trang, P.T.K.; Lan, V.M.; Mai, N.-N.; Manh, P.D.; Viet, P.H.; Radloff, K.; Aziz, Z.; Mey, J.L.; et al. Retardation of Arsenic Transport through a Pleistocene Aquifer. Nature 2013, 501, 204–207. [Google Scholar] [CrossRef]
- Masscheleyn, P.H.; Delaune, R.D.; Patrick, W.H. Effect of Redox Potential and pH on Arsenic Speciation and Solubility in a Contaminated Soil. Environ. Sci. Technol. 1991, 25, 1414–1419. [Google Scholar] [CrossRef]
- Guo, H.; Liu, C.; Lu, H.; Wanty, R.B.; Wang, J.; Zhou, Y. Pathways of Coupled Arsenic and Iron Cycling in High Arsenic Groundwater of the Hetao Basin, Inner Mongolia, China: An Iron Isotope Approach. Geochim. Cosmochim. Acta 2013, 112, 130–145. [Google Scholar] [CrossRef]
- Luo, T.; Hu, S.; Cui, J.; Tian, H.; Jing, C. Comparison of Arsenic Geochemical Evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), China. Appl. Geochem. 2012, 27, 2315–2323. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.; Hu, X. Arsenic Pollution in Groundwater from Hetao Area, China. Environ. Geol. 2002, 41, 638–643. [Google Scholar] [CrossRef]
- Zheng, Y.; Stute, M.; van Geen, A.; Gavrieli, I.; Dhar, R.; Simpson, H.; Schlosser, P.; Ahmed, K. Redox Control of Arsenic Mobilization in Bangladesh Groundwater. Appl. Geochem. 2004, 19, 201–214. [Google Scholar] [CrossRef]
- Zheng, Y.; van Geen, A.; Stute, M.; Dhar, R.; Mo, Z.; Cheng, Z.; Horneman, A.; Gavrieli, I.; Simpson, H.; Versteeg, R.; et al. Geochemical and Hydrogeological Contrasts between Shallow and Deeper Aquifers in Two Villages of Araihazar, Bangladesh: Implications for Deeper Aquifers as Drinking Water Sources. Geochim. Cosmochim. Acta 2005, 69, 5203–5218. [Google Scholar] [CrossRef]
- Buschmann, J.; Berg, M.; Stengel, C.; Sampson, M.L. Arsenic and Manganese Contamination of Drinking Water Resources in Cambodia: Coincidence of Risk Areas with Low Relief Topography. Environ. Sci. Technol. 2007, 41, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Anawar, H.M.; Akai, J.; Komaki, K.; Terao, H.; Yoshioka, T.; Ishizuka, T.; Safiullah, S.; Kato, K. Geochemical Occurrence of Arsenic in Groundwater of Bangladesh: Sources and Mobilization Processes. J. Geochem. Explor. 2003, 77, 109–131. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G.; Arain, M.B.; Afridi, H.I.; Kandhro, G.A.; Sarfraz, R.A.; Jamal, M.K.; Shah, A.Q. Evaluation of Arsenic and Other Physico-Chemical Parameters of Surface and Ground Water of Jamshoro, Pakistan. J. Hazard. Mater. 2009, 166, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.E.; Eqani, S.A.M.A.S.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. Extensive Arsenic Contamination in High-pH Unconfined Aquifers in the Indus Valley. Sci. Adv. 2017, 3, e1700935. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater Arsenic Contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Sarkar, S.; Mukherjee, A.; Shamsudduha, M.; Ahmed, K.M.; Bhattacharya, A.; Mitra, A. Modeling Regional-Scale Groundwater Arsenic Hazard in the Transboundary Ganges River Delta, India and Bangladesh: Infusing Physically-Based Model with Machine Learning. Sci. Total Environ. 2020, 748, 141107. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Ye, Y.; Cao, Q.; Du, P.; Dong, J. Estimation of Arsenic Contamination in Reclaimed Agricultural Soils Using Reflectance Spectroscopy and ANFIS Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2540–2546. [Google Scholar] [CrossRef]
- Podgorski, J.; Araya, D.; Berg, M. Geogenic Manganese and Iron in Groundwater of Southeast Asia and Bangladesh—Machine Learning Spatial Prediction Modeling and Comparison with Arsenic. Sci. Total Environ. 2022, 833, 155131. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Sthiannopkao, S.; Pachepsky, Y.A.; Kim, K.-W.; Kim, J.H. Prediction of Contamination Potential of Groundwater Arsenic in Cambodia, Laos, and Thailand Using Artificial Neural Network. Water Res. 2011, 45, 5535–5544. [Google Scholar] [CrossRef] [PubMed]
- Charulatha, G.; Srinivasalu, S.; Maheswari, O.U.; Venugopal, T.; Giridharan, L. Evaluation of Ground Water Quality Contaminants Using Linear Regression and Artificial Neural Network Models. Arab. J. Geosci. 2017, 10, 128. [Google Scholar] [CrossRef]
- Sayegh, A.S.; Munir, S.; Habeebullah, T.M. Comparing the Performance of Statistical Models for Predicting PM10 Concentrations. Aerosol Air Qual. Res. 2014, 14, 653–665. [Google Scholar] [CrossRef]
- Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of Machine Learning in Groundwater Quality Modeling—A Comprehensive Review. Water Res. 2023, 233, 119745. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Application of Random Forest Regression and Comparison of Its Performance to Multiple Linear Regression in Modeling Groundwater Nitrate Concentration at the African Continent Scale. Hydrogeol. J. 2019, 27, 1081–1098. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Gronberg, J.A.; Juckem, P.F.; Miller, M.P.; Austin, B.P. Predicting Redox-Sensitive Contaminant Concentrations in Groundwater Using Random Forest Classification. Water Resour. Res. 2017, 53, 7316–7331. [Google Scholar] [CrossRef]
- Akakuru, O.C.; Akaolisa, C.C.Z.; Aigbadon, G.O.; Eyankware, M.O.; Opara, A.I.; Obasi, P.N.; Ofoh, I.J.; Njoku, A.O.; Akudinobi, B.E.B. Integrating Machine Learning and Multi-Linear Regression Modeling Approaches in Groundwater Quality Assessment around Obosi, Se Nigeria. Environ. Dev. Sustain. 2023, 25, 14567–14606. [Google Scholar] [CrossRef]
- Saghebian, S.M.; Sattari, M.T.; Mirabbasi, R.; Pal, M. Ground Water Quality Classification by Decision Tree Method in Ardebil Region, Iran. Arab. J. Geosci. 2014, 7, 4767–4777. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Tan, Z.; Yang, Q.; Zheng, Y. Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History. Environ. Sci. Technol. 2020, 54, 9454–9463. [Google Scholar] [CrossRef] [PubMed]
- Bindal, S.; Singh, C.K. Predicting Groundwater Arsenic Contamination: Regions at Risk in Highest Populated State of India. Water Res. 2019, 159, 65–76. [Google Scholar] [CrossRef]
- Feng, L.-X.; Brown, R.W.; Han, B.-F.; Wang, Z.-Z.; Łuszczak, K.; Liu, B.; Zhang, Z.-C.; Ji, J.-Q. Thrusting and Exhumation of the Southern Mongolian Plateau: Joint Thermochronological Constraints from the Langshan Mountains, Western Inner Mongolia, China. J. Asian Earth Sci. 2017, 144, 287–302. [Google Scholar] [CrossRef]
- He, J.; Ma, T.; Deng, Y.; Yang, H.; Wang, Y. Environmental Geochemistry of High Arsenic Groundwater at Western Hetao Plain, Inner Mongolia. Front. Earth Sci. China 2009, 3, 63–72. [Google Scholar] [CrossRef]
- Guo, H.; Yang, S.; Tang, X.; Li, Y.; Shen, Z. Groundwater Geochemistry and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Hetao Basin, Inner Mongolia. Sci. Total Environ. 2008, 393, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, Y.; Ma, T. Isotope and Minor Element Geochemistry of High Arsenic Groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl. Geochem. 2009, 24, 587–599. [Google Scholar] [CrossRef]
- Gao, Z.; Weng, H.; Guo, H. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi-Isotopic Approaches. J. Hydrol. 2021, 595, 125981. [Google Scholar] [CrossRef]
- Goodbred, S.L.; Kuehl, S.A. The Significance of Large Sediment Supply, Active Tectonism, and Eustasy on Margin Sequence Development: Late Quaternary Stratigraphy and Evolution of the Ganges–Brahmaputra Delta. Sediment. Geol. 2000, 133, 227–248. [Google Scholar] [CrossRef]
- Karim, M.M.; Safiuddin, M. Arsenic Contamination of Groundwater in Bangladesh; British Geological Survey Technical Report WC/00/19; British Geological Survey: Nottingham, UK, 2001; Volume 4, pp. 162–165. [Google Scholar]
- Acharyya, S.K.; Lahiri, S.; Raymahashay, B.C.; Bhowmik, A. Arsenic Toxicity of Groundwater in Parts of the Bengal Basin in India and Bangladesh: The Role of Quaternary Stratigraphy and Holocene Sea-Level Fluctuation. Environ. Geol. 2000, 39, 1127–1137. [Google Scholar] [CrossRef]
- Huang, G.; Song, J.; Han, D.; Liu, R.; Liu, C.; Hou, Q. Assessing Natural Background Levels of Geogenic Contaminants in Groundwater of an Urbanized Delta through Removal of Groundwaters Impacted by Anthropogenic Inputs: New Insights into Driving Factors. Sci. Total Environ. 2023, 857, 159527. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.; Ramos, J.; Armienta, A. Groundwater Arsenic Variations: The Role of Local Geology and Rainfall. Appl. Geochem. 2004, 19, 245–250. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z. Heavy Metal(loid)s and Organic Contaminants in Groundwater in the Pearl River Delta That Has Undergone Three Decades of Urbanization and Industrialization: Distributions, Sources, and Driving Forces. Sci. Total Environ. 2018, 635, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, Z.; Liu, F.; Sun, J.; Wang, J. Impact of Human Activity and Natural Processes on Groundwater Arsenic in an Urbanized Area (South China) Using Multivariate Statistical Techniques. Environ. Sci. Pollut. Res. 2014, 21, 13043–13054. [Google Scholar] [CrossRef] [PubMed]
- Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, I.; Umar, R.; Farooq, S.H. Spatio-Temporal Variation and Health Risk Associated with Trace Element Concentrations in Groundwater of Mathura City Using Modified Indexing Approach. Arab. J. Geosci. 2022, 15, 318. [Google Scholar] [CrossRef]
- Li, X.; Ge, J.; Liu, Z.; Yang, S.; Wang, L.; Liu, Y. Estimating the Methane Flux of the Dajiuhu Subalpine Peatland Using Machine Learning Algorithms and the Maximal Information Coefficient Technique. Sci. Total Environ. 2024, 916, 170241. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L. Predictive Modeling of Groundwater Nitrate Pollution Using Random Forest and Multisource Variables Related to Intrinsic and Specific Vulnerability: A Case Study in an Agricultural Setting (Southern Spain). Sci. Total Environ. 2014, 476–477, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, K.; Mao, L.; Kisi, O.; Yaseen, Z.M.; Shahid, S. Quantifying Hourly Suspended Sediment Load Using Data Mining Models: Case Study of a Glacierized Andean Catchment in Chile. J. Hydrol. 2018, 567, 165–179. [Google Scholar] [CrossRef]
- Sharafati, A.; Khosravi, K.; Khosravinia, P.; Ahmed, K.; Salman, S.A.; Yaseen, Z.M.; Shahid, S. The Potential of Novel Data Mining Models for Global Solar Radiation Prediction. Int. J. Environ. Sci. Technol. 2019, 16, 7147–7164. [Google Scholar] [CrossRef]
- Jin, Z.; Shang, J.; Zhu, Q.; Ling, C.; Xie, W.; Qiang, B. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. In Web Information Systems Engineering—WISE 2020; Lecture Notes in Computer Science; Springer: Cham, Swizerland, 2020; Volume 12343, pp. 503–515. [Google Scholar] [CrossRef]
- Guo, W.; Gao, Z.; Guo, H.; Cao, W. Hydrogeochemical and Sediment Parameters Improve Predication Accuracy of Arsenic-Prone Groundwater in Random Forest Machine-Learning Models. Sci. Total Environ. 2023, 897, 165511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Rodríguez-Lado, L.; Johnson, C.A.; Xue, H.; Shi, J.; Zheng, Q.; Sun, G. Predicting the Risk of Arsenic Contaminated Groundwater in Shanxi Province, Northern China. Environ. Pollut. 2012, 165, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Raschka, S. Python Machine Learning, 1st ed.; Equation Reference; Packt Publishing: Birmingham, UK, 2015; Volume 2015, pp. 1–71. [Google Scholar]
- Chen, W.; Tsangaratos, P.; Ilia, I.; Duan, Z.; Chen, X. Groundwater Spring Potential Mapping Using Population-Based Evolutionary Algorithms and Data Mining Methods. Sci. Total Environ. 2019, 684, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Bellu, A.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. A Framework Model for the Dimensioning and Allocation of a Detention Basin System: The Case of a Flood-Prone Mountainous Watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Wang, H.; Eiche, E.; Guo, H.; Norra, S. Impact of Sedimentation History for As Distribution in Late Pleistocene-Holocene Sediments in the Hetao Basin, China. J. Soils Sediments 2020, 20, 4070–4082. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Li, Y.; Berner, Z.; Tang, X.; Norra, S.; Stüben, D. Hydrogeological and Biogeochemical Constrains of Arsenic Mobilization in Shallow Aquifers from the Hetao Basin, Inner Mongolia. Environ. Pollut. 2011, 159, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Blodau, C. Mobilization of Arsenic by Dissolved Organic Matter from Iron Oxides, Soils and Sediments. Sci. Total Environ. 2006, 354, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, X.; Xiu, W.; He, W.; Cao, Y.; Zhang, D.; Wang, A. Controls of Organic Matter Bioreactivity on Arsenic Mobility in Shallow Aquifers of the Hetao Basin, P.R. China. J. Hydrol. 2019, 571, 448–459. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Rafiq, M.; Bakhat, H.F.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. In Enhancing Cleanup of Environmental Pollutants; Springer: Cham, Switzerland, 2017; Volume 2. [Google Scholar]
- Deng, Y.; Wang, Y.; Ma, T.; Gan, Y. Speciation and Enrichment of Arsenic in Strongly Reducing Shallow Aquifers at Western Hetao Plain, Northern China. Environ. Geol. 2009, 56, 1467–1477. [Google Scholar] [CrossRef]
- Postma, D.; Larsen, F.; Thai, N.T.; Trang, P.T.K.; Jakobsen, R.; Nhan, P.Q.; Long, T.V.; Viet, P.H.; Murray, A.S. Groundwater Arsenic Concentrations in Vietnam Controlled by Sediment Age. Nat. Geosci. 2012, 5, 656–661. [Google Scholar] [CrossRef]
- Rowland, H.A.L.; Pederick, R.L.; Polya, D.A.; Pancost, R.D.; Van Dongen, B.E.; Gault, A.G.; Vaughan, D.J.; Bryant, C.; Anderson, B.; Lloyd, J.R. The Control of Organic Matter on Microbially Mediated Iron Reduction and Arsenic Release in Shallow Alluvial Aquifers, Cambodia. Geobiology 2007, 5, 281–292. [Google Scholar] [CrossRef]
- Stollenwerk, K.G. Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption. In Arsenic in Ground Water; Springer: Boston, MA, USA, 2005. [Google Scholar]
- Hafeznezami, S.; Zimmer-Faust, A.G.; Jun, D.; Rugh, M.B.; Haro, H.L.; Park, A.; Suh, J.; Najm, T.; Reynolds, M.D.; Davis, J.A.; et al. Remediation of Groundwater Contaminated with Arsenic through Enhanced Natural Attenuation: Batch and Column Studies. Water Res. 2017, 122, 545–556. [Google Scholar] [CrossRef]
- Nickson, R.T.; McArthur, J.M.; Ravenscroft, P.; Burgess, W.G.; Ahmed, K.M. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Appl. Geochem. 2000, 15, 403–413. [Google Scholar] [CrossRef]
- McArthur, J.M.; Ravenscroft, P.; Safiulla, S.; Thirlwall, M.F. Arsenic in Groundwater: Testing pollution Mechanisms for Sedimentary Aquifers in Bangladesh. Water Resour. Res. 2001, 37, 109–117. [Google Scholar] [CrossRef]
- Aiken, G.; Kuniansky, E.L. U.S. Geological Survey Artificial Recharge Workshop Proceedings, April 2-4, 2002, Sacramento, California; U.S. Geological Survey: Reston, VA, USA, 2002; pp. 47–50. [Google Scholar]
- Bhattacharya, P.; Welch, A.H.; Ahmed, K.M.; Jacks, G.; Naidu, R. Arsenic in Groundwater of Sedimentary Aquifers. Appl. Geochem. 2004, 19, 163–167. [Google Scholar] [CrossRef]
- Akai, J.; Izumi, K.; Fukuhara, H.; Masuda, H.; Nakano, S.; Yoshimura, T.; Ohfuji, H.; Anawar, H.M.; Akai, K. Mineralogical and Geomicrobiological Investigations on Groundwater Arsenic Enrichment in Bangladesh. Appl. Geochem. 2004, 19, 215–230. [Google Scholar] [CrossRef]
- Cao, W.; Guo, H.; Zhang, Y.; Ma, R.; Li, Y.; Dong, Q.; Li, Y.; Zhao, R. Controls of Paleochannels on Groundwater Arsenic Distribution in Shallow Aquifers of Alluvial Plain in the Hetao Basin, China. Sci. Total Environ. 2018, 613–614, 958–968. [Google Scholar] [CrossRef] [PubMed]
Hetao Basin | ||||
Predictor Variables | Coefficients | Standard Error | Standardized Coefficients | p Value |
intercept | −2312.778 | 836.709 | / | 0.007 |
OCD | −0.887 | 1.291 | −0.137 | 0.493 |
CC | −0.852 | 0.649 | −0.094 | 0.192 |
SOC | 1.062 | 0.808 | 0.162 | 0.191 |
BD | −1.031 | 3.225 | −0.047 | 0.75 |
SC | −0.052 | 0.521 | −0.011 | 0.92 |
CEC | −0.461 | 0.742 | −0.054 | 0.536 |
Ca²⁺ | 0.718 | 0.578 | 0.18 | 0.216 |
Cl− | −0.031 | 0.071 | −0.051 | 0.657 |
DOC | 6.54 | 3.934 | 0.134 | 0.099 |
Eh | −0.25 | 0.244 | −0.101 | 0.307 |
Fe | 85.617 | 31.68 | 0.254 | 0.008 |
Mg | 0.68 | 0.511 | 0.179 | 0.186 |
pH | 349.246 | 67.566 | 0.679 | <0.001 |
SO42− | −0.201 | 0.1 | −0.24 | 0.047 |
Bangladesh | ||||
Predictor Variables | Coefficients | Standard Error | Standardized Coefficients | p Value |
intercept | −877.873 | 598.590 | / | 0.145 |
OCD | 0.102 | 0.383 | 0.033 | 0.790 |
CC | −1.427 | 2.995 | −0.037 | 0.634 |
SOC | −0.486 | 2.850 | −0.015 | 0.865 |
BD | 0.075 | 0.342 | 0.026 | 0.826 |
SC | −0.034 | 0.215 | −0.024 | 0.874 |
CEC | −0.981 | 0.596 | −0.170 | 0.102 |
Ca2⁺ | −0.225 | 0.281 | −0.092 | 0.424 |
Cl− | −0.156 | 0.090 | −0.141 | 0.086 |
DOC | 10.117 | 2.981 | 0.244 | 0.001 |
Eh | −0.052 | 0.101 | −0.034 | 0.605 |
Fe | 10.207 | 2.554 | 0.338 | <0.001 |
Mg | 2.005 | 0.669 | 0.275 | 0.003 |
pH | 173.960 | 32.274 | 0.379 | <0.001 |
SO₄²− | −0.784 | 0.427 | −0.144 | 0.069 |
Maximum | Minimum | Average ± Standard Deviation | |||||
---|---|---|---|---|---|---|---|
Dataset | Unit | Hetao Basin | Bangladesh | Hetao Basin | Bangladesh | Hetao Basin | Bangladesh |
OCD | hg/m3 | 205 | 364 | 32 | 247 | 81.6 ± 31.3 | 300.4 ± 30.7 |
CC | g/kg | 246 | 131 | 117 | 121 | 166.5 ± 22.3 | 127.1 ± 2.5 |
SOC | t/ha | 221 | 51 | 24 | 35 | 65.6 ± 30.9 | 42.3 ± 3 |
BD | cg/cm3 | 154 | 384 | 119 | 243 | 141 ± 9.3 | 321.2 ± 32.9 |
SC | g/kg | 277 | 549 | 85 | 313 | 149.2 ± 40.8 | 422.8 ± 65 |
CEC | mmol/kg | 252 | 227 | 123 | 156 | 163.2 ± 23.8 | 188.4 ± 16.4 |
Ca2+ | mg/L | 219.8 | 183 | 3.6 | 16.6 | 67.2 ± 51 | 78.9 ± 38.8 |
Cl− | mg/L | 1645 | 637 | 31.8 | 1 | 340 ± 325.8 | 46.3 ± 85.5 |
DOC | mg/L | 34 | 14 | 1 | 0.1 | 5 ± 4.2 | 2.4 ± 2.3 |
Eh | mv | 143.6 | 278 | −246 | −105 | −102.6 ± 81.8 | 76.5 ± 62.2 |
Fe | mg/L | 2.7 | 12.1 | 0 | 0.007 | 0.4 ± 0.6 | 2.9 ± 3.1 |
Mg | mg/L | 264.7 | 79.9 | 12.6 | 8.9 | 64.7 ± 53.3 | 30.5 ± 13 |
pH | unitless | 8.8 | 7.55 | 7 | 6.53 | 7.9 ± 0.4 | 7 ± 0.2 |
SO42− | mg/L | 1123 | 115 | 0.4 | 0.2 | 237.6 ± 242.5 | 8.2 ± 17.4 |
As | μg/L | 946.2 | 409 | 0.3 | 0.5 | 189.3 ± 202.8 | 68.9 ± 94.8 |
Correct Classification | False Positive | False Negative | |
---|---|---|---|
Training Dataset | |||
MLOR (Hetao Basin) | 82.76% | 10.35% | 6.90% |
MLOR (Bangladesh) | 79.41% | 17.65% | 2.94% |
RFC (Hetao Basin) | 98.70% | 0.88% | 0.42% |
RFC (Bangladesh) | 98.25% | 0.75% | 1.00% |
Validation Dataset | |||
MLOR (Hetao Basin) | 81.60% | 17.50% | 0.90% |
MLOR (Bangladesh) | 72.18% | 19.55% | 8.27% |
RFC (Hetao Basin) | 82.76% | 15.24% | 2.00% |
RFC (Bangladesh) | 91.20% | 2.94% | 5.88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Kumar, A.; Wang, H. Predicting Arsenic Contamination in Groundwater: A Comparative Analysis of Machine Learning Models in Coastal Floodplains and Inland Basins. Water 2024, 16, 2291. https://doi.org/10.3390/w16162291
Zhao Z, Kumar A, Wang H. Predicting Arsenic Contamination in Groundwater: A Comparative Analysis of Machine Learning Models in Coastal Floodplains and Inland Basins. Water. 2024; 16(16):2291. https://doi.org/10.3390/w16162291
Chicago/Turabian StyleZhao, Zhenjie, Amit Kumar, and Hongyan Wang. 2024. "Predicting Arsenic Contamination in Groundwater: A Comparative Analysis of Machine Learning Models in Coastal Floodplains and Inland Basins" Water 16, no. 16: 2291. https://doi.org/10.3390/w16162291
APA StyleZhao, Z., Kumar, A., & Wang, H. (2024). Predicting Arsenic Contamination in Groundwater: A Comparative Analysis of Machine Learning Models in Coastal Floodplains and Inland Basins. Water, 16(16), 2291. https://doi.org/10.3390/w16162291