Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Methods
2.3. Mineral Saturation Index
2.4. Groundwater Quality Evaluation
2.5. Health Risk Assessment
3. Results
3.1. Hydrochemical Characteristics and Mineral Saturation Index
3.2. Sources of Substances in Groundwater
3.2.1. The Main Source of Ions
- (1)
- The source of Na+
- (2)
- Sources of Ca2+ and Mg2+
- (3)
- Contribution of mineral dissolution
- (4)
- Distribution relationship of anions and cations
- (5)
- Ion exchange
3.2.2. Piper Diagram
3.2.3. Chadha Diagram
3.2.4. The Formation and Evolution Law of Groundwater
3.2.5. Hydrogeochemical Modeling
3.3. The Relationship between Groundwater Components and Human Health
3.3.1. Endemic Diseases and Target Ion Screening
3.3.2. Results of Groundwater Quality Evaluation
3.3.3. Non-Carcinogenic Health Risks
3.3.4. Analysis of Drinking Groundwater and Human Health
- (1)
- Comprehensive analysis of healthy geological conditions
- (2)
- Macro-elements and their compounds and human health
- (3)
- Micronutrients and their compounds and human health
- (4)
- Comprehensive
3.3.5. A Discussion of Healthy Groundwater
4. Conclusions
- (1)
- The dissolution and alteration of major minerals within the aquifer contribute to the characteristics of groundwater through various chemical reactions. Igneous rocks, which contain minerals such as potassium feldspar, plagioclase, and pyroxene, release Na+, Cl−, and K+ ions into the groundwater. In contrast, sedimentary rocks that contain minerals like dolomite and calcite provide ions such as Ca2+, Mg2+, and HCO3− to the groundwater, which can accumulate and precipitate with runoff.
- (2)
- A comprehensive assessment of groundwater quality indicates that the water in this region can be predominantly categorized into Classes II, III, IV, and V. The primary factors influencing the evaluation of water quality include fluoride (F−), nitrate (NO3−), sulfate (SO42−), dissolved oxygen (DO), chloride (Cl−), sodium (Na+), and total dissolved solids (TDS). Notably, fluoride affected 23% of the samples, while both nitrate and sulfate impacted 18% of the water sample evaluation results.
- (3)
- The results of the non-carcinogenic health risk assessment indicate that F− and NO3− exhibit distinct hazard quotients for children and adults within the studied region. However, neither HQNitrate, HQFluoride, nor THI values have resulted in any tangible risks. The health threats associated with nitrate and fluoride appear to be nearly equivalent for both adults and children, although the hazard quotient for children is slightly higher than that for adults.
- (4)
- The analysis of the relationship between drinking water and human health, based on macro-elements, reveals significant geological health concerns in the study area. These concerns include excessively high local hardness, along with increased concentrations of calcium (Ca), magnesium (Mg), and sodium (Na) ions. Additionally, the content of sulfate (SO4) is also markedly elevated. Regarding micronutrients, nearly 50% of the water samples in this region posed health hazards which could lead to conditions such as fluorosis. In contrast, the levels of beneficial micronutrients, including selenium (Se), zinc (Zn), boron (B), and germanium (Ge), were not found to be elevated.
- (5)
- Based on the elemental abundance characteristics of the Earth’s crust, human blood, and groundwater in the study area, we compared the hydrochemical characteristics of drinking groundwater in longevity areas with those in non-longevity areas. This comparison facilitated a discussion on the definition of healthy groundwater and led to recommendations for its consumption.
- (6)
- In the next phase of our research, we will continue to collect groundwater samples to analyze both intra-annual and inter-annual variations in groundwater quality. Additionally, we will collect aquifer rock samples and analyze their mineral composition to further elucidate the processes and intensities of water–salt interactions. During the survey, we will compile statistics on the types and frequencies of endemic disease occurrences and provide detailed recommendations based on the drinking water habits observed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Meng, J.; Chen, X.S.; Fan, J.F. An overview of complexity studies on Earth systems. J. Beijing Norm. Univ. (Nat. Sci.) 2023, 59, 796–805. [Google Scholar] [CrossRef]
- Hamilton, E.I. The chemical elements and human morbidity-water, air and places—A study of natural variability. Sci. Total Environ. 1974, 3, 3–85. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liu, Y.S.; Lu, A.H.; Wang, Y. Water: The lifeblood of the Earth-human system revealed in elemental correlations. Sci. China Earth Sci. 2023, 66, 2386–2390. [Google Scholar] [CrossRef]
- Lin, N.F. Medical Environmental Geochemistry; Jilin Science and Technology Press: Changchun, China, 1991; pp. 239–240. [Google Scholar]
- Zhu, W.; Wang, C.; Wu, J.; Chen, S.; Mao, W.; Chen, Y.; Chen, M. Dietary copper intake and the prevalence of kidney stones among adult in the United States: A propensity score matching study. Front. Public Health 2022, 10, 973887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Y.; Yu, Z.; Yang, T.; Xu, J.; Chao, L.; Ni, J.; Wang, L.; Gao, Y.; Hu, Y.; et al. Xin’anjiang Nested Experimental Watershed (XAJ-NEW) for Understanding Multiscale Water Cycle: Scientific Objectives and Experimental Design. Engineering 2022, 18, 207–217. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Liu, Z.; Ma, J.; Yang, F.; Guo, H.; Fu, Q. How Human Activities Affect Groundwater Storage. Research 2024, 7, 0369. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zeng, F.S.; Wei, X.Z.; Khan, U.; Zou, Y.H. Three-Dimensional Hierarchical Hydrogeological Static Modeling for Groundwater Resource Assessment: A Case Study in the Eastern Henan Plain, China. Water 2022, 14, 1651. [Google Scholar] [CrossRef]
- Chen, X.; Huang, R.C.; Huang, F.; Liu, X.F.; Zhang, Y.Y.; Zhang, R.R. A comprehensive study of the maintaining mechanisms for hydrological cycle and ecological evolution and function in the northwest inland river basins of China. Hydrogeol. Eng. Geol. 2022, 49, 12–21. [Google Scholar] [CrossRef]
- Dang, X.Y.; Zhang, J.; Chang, L.; Gu, X.F. Hydrogeological Survey and Water Resources Security in Northwest China. Northwest Geol. 2022, 55, 81–95. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Didar-Ul Islam, S.M.; Rume, T.; Quraishi, S.B.; Rahman, M.S.; Bhuiyan, M.A.H. Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City dwellers in Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100374. [Google Scholar] [CrossRef]
- Wu, C.; Tang, K.W.; Zhang, X.H. Water Quality assessment and variation characteristics of underground drinking water sources in Hebei Province based on self-defined classification criteria. Water Resour. Power 2022, 40, 116–119+160. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Zhang, B.; Huang, X.Q.; Han, Q.Q.; Li, Y.; Xu, Z.X.; Yu, K. Distribution characteristics and formation factors of high fluoride groundwater in the north of Lingwu City. Environ. Chem. 2020, 39, 2520–2528. [Google Scholar] [CrossRef]
- Yuan, H.Q.; Li, Q.; Tao, H.F.; Aihemaiti, M.; Yang, W.X.; Su, Y.P. Groundwater arsenic enrichment factors of Kuitun River basin, Xinjiang. Environ. Chem. 2020, 39, 524–530. [Google Scholar] [CrossRef]
- Li, Z.Y.; Cao, W.G.; Wang, Z.R.; Li, J.C.; Ren, Y. Hydrochemical Characterization and Irrigation Suitability Analysis of Shallow Groundwater in Hetao Irrigation District, Inner Mongolia. Geoscience 2022, 36, 418–426. [Google Scholar] [CrossRef]
- Xia, Y.B.; Wang, B.; Li, H.T.; Ma, Z.; Guo, X.; Zhao, K.; Zhao, C.R.; Zhang, X.; Wang, X.X. Study on hydrochemical origins and health geology regionalization of shallow groundwater in Xiong’an New Area. China Geol. 2023, 1–18. Available online: https://www.cnki.com.cn/Article/CJFDTotal-DIZI20220619002.htm (accessed on 1 August 2023).
- Meng, R.F.; Yang, H.F.; Bai, H.; Xu, B.H. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain Area of Haihe Basin. Rock Miner. Anal. 2023, 42, 383–395. [Google Scholar]
- Zhang, C.C.; Hou, X.W.; Li, X.Q.; Wang, Z.X.; Gui, C.L.; Zuo, X.F. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring. Hydrogeol. Eng. Geol. 2021, 48, 62–71. [Google Scholar] [CrossRef]
- Lakhvinder, K.; Madhuri, S.; Sakshi, S.; Bhavika, S.; Renu, L.; Gagandeep, S. Hydrogeochemical characterization of groundwater in alluvial plains of river Yamuna in northern India: An insight of controlling processes. J. King Saud Univ. Sci. 2019, 31, 1245–1253. [Google Scholar] [CrossRef]
- Κατσάνου, Κ.; Siavalas, G.; Panagopoulos, G.; Lambrakis, N. Rare earth element patterns in a rapidly changing karst environment. Appl. Geochem. 2022, 146, 105462. [Google Scholar] [CrossRef]
- Gayathri, J.A.; Raj, V.T.; Sreelash, K.; Maya, K.; Vandana, M.; Padmalal, D. Spatiotemporal variability in groundwater chemistry of a mountainous catchment with complex geologic and climate gradients in south west India. Environ. Earth Sci. 2021, 80, 18–28. [Google Scholar] [CrossRef]
- Jiang, W.J.; Meng, L.S.; Liu, F.T.; Sheng, Y.Z.; Chen, S.M.; Yang, J.L.; Mao, H.R.; Zhang, J.; Zhang, Z.; Ning, H. Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self-organizing map (SOM). Environ. Geochem. Health 2023, 45, 6353–6370. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Jiang, W.J.; Sheng, Y.Z.; Wang, K.L.; Chen, S.M.; Zhang Zhuo Liu, F.T. Comprehensive evaluation of nitrogen contamination in water ecosystems of the Miyun reservoir watershed, northern China: Distribution, source apportionment and risk assessment. Environ. Geochem. Health 2024, 46, 278. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z. Distribution and Health Risk Assessment of Organic Pollutants in Groundwater in the Receiving Area of the South-to-North Water Transfer Project in Mihuaishun; China University of Geosciences: Beijing, China, 2021. [Google Scholar]
- Zhang, Q.M.; Zhao, R.P.; Wang, X.L.; Sun, X.P. Chemical and biological remediation of soil and groundwater organic pollution. Environ. Dev. 2020, 32, 55–56. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, F.; Jiang, W.; Chen, S.; Zhang, H.; Gao, Z.; Zhang, J.; Niu, X.; Cao, W.; Shan, Q. Quantifying the factors controlling groundwater fluoride and associated health risks in the coastal river delta, northern China. J. Asian Earth Sci. 2024, 259, 105929. [Google Scholar] [CrossRef]
- Han, Z.H.; Ma, T.; Shen, S.; Du, Y.; Wu, X.C.; Liu, W.H. Distribution characteristics and influencing factors of poor-quality native groundwater in river percolation system in the lower reaches of the Hanjiang River. Earth Sci. Front. 2021, 28, 035–048. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, H.; Han, S.; Gao, Z.; Niu, X. Controls of Geochemical and Hydrogeochemical Factors on Arsenic Mobility in the Hetao Basin, China. Groundwater 2022, 61, 44–55. [Google Scholar] [CrossRef]
- Banach, A.; Kuźniar, A.; Marzec-Grządziel, A.; Wolińska, A.; Gałazką, A. Phenotype switching in metal-tolerant bacteria isolated from a hyperaccumulator plant. Biology 2021, 10, 879. [Google Scholar] [CrossRef]
- Li, L.J.; Wang, H.J.; Ma, J.S. Pollution characteristics and health risk assessment of volatile organic compounds in groundwater in the Lower Liaohe River Plain. Rock Miner. Anal. 2021, 40, 930–943. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, X.; Fang, X.; Zhang, N.; Xu, X.; Li, L.; Liu, Y.; Su, X.; Xia, Y. Characterization of drinking groundwater quality in rural areas of Inner Mongolia and assessment of human health risks. Ecotoxicol. Environ. Saf. 2022, 234, 113360. [Google Scholar] [CrossRef]
- Dulamsuren, T.T.D. Effects of forest fragmentation on organic carbon pool densities in the Mongolian forest-steppe. For. Ecol. Manag. 2019, 433, 780–788. [Google Scholar] [CrossRef]
- GB/T 14848-2017; Groundwater Quality Standards. Standards Press of China: Beijing, China, 2018.
- Rajkumar, H.; Pradeep, K.N.; Gagandeep, S.; Rishi, M. Hydrogeochemical characterization, multi-exposure deterministic and probabilistic health hazard evaluation in groundwater in parts of Northern India. Toxin Rev. 2022, 42, 204–227. [Google Scholar] [CrossRef]
- Qureshi, A.; Maurice, C.; Öhlander, B. Co-disposal of lignite fly ash and coal mine waste rock for neutralisation of AMD. Environ. Sci. Pollut. Res. Int. 2021, 28, 48728–48741. [Google Scholar] [CrossRef]
- Choi, H.; Kim, J.; Shim, B.O.; Kim, D.H. Characterization of Aquifer Hydrochemistry from the Operation of a Shallow Geothermal System. Water 2020, 12, 1377. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment: Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A); USEPA: Washington, DC, USA, 1989. [Google Scholar]
- Sun, L.; Ma, X.; Jin, H.Y.; Fan, C.J.; Li, X.D.; Zuo, T.T.; Ma, S.C.; Wang, S.C. Geographical origin differentiation of Chinese Angelica by specific metal element fingerprinting and risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 45018–45030. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals); USEPA: Washington, DC, USA, 1991. [Google Scholar]
- USEPA. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors-OSWER Directive 9200.1-120; USEPA: Washington, DC, USA, 2014. [Google Scholar]
- Li, Y.Z.; Liu, J.T.; Gao, Z.J.; Wang, M.; Yu, L.Q. Major ion chemistry and water quality assessment of groundwater in the Shigaze urban area, Qinghai-Tibetan Plateau, China. Water Sci. Technol. Water Supply 2019, 20, 335–347. [Google Scholar] [CrossRef]
- Sunkari, E.D.; Abu, M.; Zango, M.S.; Lomoro, W.; Alex, M. Hydrogeochemical characterization and assessment of groundwater quality in the Kwahu-Bombouaka Group of the Voltaian Supergroup, Ghana. J. Afr. Earth Sci. 2020, 169, 103899. [Google Scholar] [CrossRef]
- Boyd, E.S.; Hamilton, T.L.; Havig, J.R.; Skidmore, M.L.; Shock, E.L. Chemolithotrophic primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 2014, 80, 6146–6153. [Google Scholar] [CrossRef]
- Suhendar, R.; Hadian, M.S.D.; Muljana, B.; Setiawan, T.; Hendarmawan, H. Geochemical Evolution and Groundwater Flow System in Batujajar Groundwater Basin Area, West Java, Indonesia. Indones. J. Geosci. 2020, 7, 87–104. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Kuznetsov, P.; Young, R.F.; Semple, K.M.; Li, C.; Foght, J.M.; Siddique, T. Microbial transformation of solid phase impacts quality of recovered water during consolidation of bioreactor-treated oil sands tailings. J. Environ. Chem. Eng. 2021, 9, 104715. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Singh, A.K. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh. J. Geol. Soc. India 2014, 83, 329–343. [Google Scholar] [CrossRef]
- Su, G.F.; Liu, G.J.; Li, Y.L.; Wang, G.Y. Analysis of groundwater ion abnormality and its cause of centralized drinking water sources in Jieshou City, China. Front. Environ. Sci. 2023, 10, 1055623. [Google Scholar] [CrossRef]
- Hassan, A.M.; Ersoy, A.F. Hydrogeochemical and isotopic investigations on the origins of groundwater salinization in Çarşamba coastal aquifer (North Turkey). Environ. Earth Sci. 2022, 81, 128. [Google Scholar] [CrossRef]
- Susan, A.; Katya, C.; Natasha, C.W. Chemical Contamination of Drinking Water in Resource-Constrained Settings: Global Prevalence and Piloted Mitigation Strategies. Annu. Rev. Environ. Resour. 2020, 45, 195–226. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, X.; Teng, Y.; Li, X.; Zhang, J.J.; Wu, J.; Zuo, R. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol. Environ. Saf. 2017, 137, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.D. Analysis of the Relationship between Water Hardness and Human Life and Its Determination. Chem. Manag. 2021, 07, 48–49. [Google Scholar] [CrossRef]
- Paulson, W.D. Anion Gap-Bicarbonate Relation in Diabetic Ketoacidosis. Am. J. Med. 1986, 81, 995–1000. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Chand, S.; Rafique, H. Predicting the spatial distribution of sulfate concentration in groundwater of Jampur-Pakistan using geostatistical methods. Desalination Water Treat. 2016, 57, 28195–28204. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Wang, H.W.; Zhai, T.L.; Hua, M.J. Characteristics and source apportionment of groundwater nitrate contamination in the Hutuo River alluvial-pluvial fan regions. Hydrogeol. Eng. Geol. 2017, 44, 110–117. [Google Scholar] [CrossRef]
- Jagadeshan, G.; Kalpana, L.; Elango, L. Hydrogeochemistry of High Fluoride Groundwater in Hard Rock Aquifer in a Part of Dharmapuri District, Tamil Nadu, India. Geochem. Int. 2015, 53, 554–564. [Google Scholar] [CrossRef]
- Li, T. The Earth Abundance of Chemical Elements. Geochemistry 1976, 3, 167–174. [Google Scholar]
- Heitland, P.; Köster, H.D. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Luo, K.; Ni, R.; Yuan, T.; Xing, G. Assessment of elemental background values and their relation with lifespan indicators: A comparative study of Jining in Shandong Province and Guanzhong area in Shaanxi Province, northern China. Sci. Total Environ. 2017, 595, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Yu, J.Y.; Bao, M.Z.; Bai, H.M.; Hao, J.Q.; Yu, Y.Q. Investigation and Study on Chronic Diseases and Risk Factors among Residents in Xilinhot City. Chin. J. Conval. Med. 2014, 23, 360–363. [Google Scholar] [CrossRef]
- Zheng, H.M.; Zhang, F.; Shi, Q.M.; Tong, L.; Meng, J. Analysis on the hydrochemical characteristics and genesis of shallow groundwater in coal resource-based cities: A case study of Jining urban area. Yangtze River 2024, 55, 51–56. [Google Scholar] [CrossRef]
- Li, Y.L. Groundwater Environmental Characteristics of Beiluo River Watershed (Guanzhong Plain Section) and Its Hydrochemical Evolution Mechanism. Master’s Thesis, Chang’an University, Xi’an, China, 2022. [Google Scholar] [CrossRef]
- Jia, C.; Wang, C.; Liu, M.; Yang, X.; Liu, W. Study on hydrogeochemical characteristics of groundwater in the alluvial plain of western Jinan. Water Resour. Hydropower Eng. 2022, 53, 49–60. [Google Scholar] [CrossRef]
- Ning, H.; Liu, F.T.; Wang, G.M.; Zhang, J.; Zhang, Z.; Chen, S.M. Evaluation of groundwater resources and analysis of related geological environment problems in Inner Mongolia Inland River Basin. N. China Geol. 2024, 47, 62–72. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, N. Hot topics and frontier evolution on soil heavy metals risk assessment in China. N. China Geol. 2023, 46, 61–69. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Alizadeh, S.M.; Frontistis, Z.; Kabdaşlı, I.; Niaragh, E.K.; Qodah, Z.A.; Naghdali, Z.; Mahmoud, A.E.D.; Sandoval, M.A.; Butler, E.; et al. Electrocoagulation as a promising defluoridation technology from water: A review of state of the art of removal mechanisms and performance trends. Water 2021, 13, 656. [Google Scholar] [CrossRef]
- Al-Shannag, M.; Al-Qodah, Z.; Nawasreh, M.; Al-Hamamreh, Z.; Bani-Melhem, K.; Alkasrawi, M. On the performance of Ballota undulata biomass for the removal of cadmium(II) ions from water. Desalination Water Treat. 2017, 67, 223–230. [Google Scholar] [CrossRef]
- Sheng, Y.; Baars, O.; Guo, D.; Whitham, J.; Srivastava, S.; Dong, H. Mineral-bound trace metals as cofactors for anaerobic biological nitrogen fixation. Environ. Sci. Technol. 2023, 57, 7206–7216. [Google Scholar] [CrossRef]
Mean | Min. | Max. | SD | CV% | Sk | |
---|---|---|---|---|---|---|
pH | 7.25 | 6.38 | 7.54 | 0.27 | 3.72 | −1.59 |
TDS (mg/L) | 514.33 | 41.85 | 1980.87 | 497.02 | 96.63 | 1.57 |
Ca2+ (mg/L) | 98.50 | 26.24 | 262.40 | 67.13 | 68.15 | 1.33 |
Mg2+ (mg/L) | 58.84 | 11.91 | 159.19 | 38.15 | 64.84 | 1.39 |
Na+ (mg/L) | 154.80 | 44.02 | 386.26 | 95.05 | 61.40 | 0.65 |
K+ (mg/L) | 7.74 | 2.30 | 34.25 | 8.36 | 108.08 | 2.29 |
HCO3− (mg/L) | 443.88 | 196.04 | 765.80 | 151.27 | 34.08 | 0.31 |
Cl− (mg/L) | 138.50 | 33.68 | 391.72 | 90.90 | 65.63 | 1.14 |
SO42− (mg/L) | 239.75 | 21.29 | 1206.98 | 310.18 | 129.38 | 1.97 |
0.19 | −1.17 | 1.39 | 0.53 | 283.29 | −0.53 | |
0.07 | −0.57 | 0.68 | 0.24 | 323.27 | −0.34 | |
−1.62 | −2.37 | −0.47 | 0.58 | −35.52 | 0.74 | |
−6.44 | −7.37 | −5.62 | 0.54 | −8.43 | −0.23 |
Children | Adults | |||||
---|---|---|---|---|---|---|
HQnitrate | HQfluoride | THI | HQnitrate | HQfluoride | THI | |
XJ12 | 0.021 | 0.116 | 0.056 | 0.020 | 0.112 | 0.132 |
XJ13 | 0.003 | 0.061 | 0.022 | 0.003 | 0.059 | 0.062 |
XJ14 | 0.042 | 0.087 | 0.069 | 0.041 | 0.084 | 0.124 |
XJ15 | 0.000 | 0.066 | 0.020 | 0.000 | 0.063 | 0.063 |
XJ16 | 0.006 | 0.061 | 0.025 | 0.006 | 0.059 | 0.065 |
XJ17 | 0.084 | 0.105 | 0.116 | 0.081 | 0.102 | 0.183 |
XJ18 | 0.009 | 0.077 | 0.033 | 0.009 | 0.075 | 0.083 |
XJ19 | 0.002 | 0.063 | 0.022 | 0.002 | 0.061 | 0.063 |
XJ20 | 0.000 | 0.063 | 0.019 | 0.000 | 0.061 | 0.061 |
XJ21 | 0.000 | 0.068 | 0.021 | 0.000 | 0.066 | 0.066 |
XJ22 | 0.045 | 0.087 | 0.072 | 0.044 | 0.084 | 0.128 |
XJ23 | 0.133 | 0.191 | 0.191 | 0.128 | 0.185 | 0.313 |
XJ24 | 0.000 | 0.094 | 0.029 | 0.000 | 0.091 | 0.091 |
XJ25 | 0.004 | 0.050 | 0.019 | 0.004 | 0.048 | 0.052 |
XJ27 | 0.000 | 0.025 | 0.008 | 0.000 | 0.024 | 0.024 |
XJ28 | 0.031 | 0.097 | 0.061 | 0.030 | 0.094 | 0.124 |
XJ29 | 0.148 | 0.046 | 0.162 | 0.143 | 0.045 | 0.188 |
XJ30 | 0.027 | 0.094 | 0.056 | 0.026 | 0.091 | 0.117 |
XJ33 | 0.022 | 0.061 | 0.041 | 0.021 | 0.059 | 0.080 |
XJ34 | 0.004 | 0.056 | 0.021 | 0.004 | 0.054 | 0.058 |
XJ35 | 0.030 | 0.080 | 0.054 | 0.029 | 0.077 | 0.106 |
XJ36 | 0.135 | 0.046 | 0.149 | 0.131 | 0.045 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Chen, G.; Liu, F.; Zhang, J.; Ning, H. Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China. Water 2024, 16, 2488. https://doi.org/10.3390/w16172488
Xia Y, Chen G, Liu F, Zhang J, Ning H. Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China. Water. 2024; 16(17):2488. https://doi.org/10.3390/w16172488
Chicago/Turabian StyleXia, Yubo, Guangfang Chen, Futian Liu, Jing Zhang, and Hang Ning. 2024. "Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China" Water 16, no. 17: 2488. https://doi.org/10.3390/w16172488
APA StyleXia, Y., Chen, G., Liu, F., Zhang, J., & Ning, H. (2024). Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China. Water, 16(17), 2488. https://doi.org/10.3390/w16172488