Controlling Methane Ebullition Flux in Cascade Reservoirs of the Upper Yellow River by the Ratio of mcrA to pmoA Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Sample Collection, Preservation, and Analysis
2.3. Collection and Calculation of CH4
2.4. Extraction of DNA from Methane-Related Microorganisms and qPCR
2.5. Statistical Analysis
3. Results
3.1. Physical and Chemical Characteristics of Reservoirs
3.2. Spatiotemporal Distribution of Dissolved CH4 Concentration
3.3. Spatiotemporal Characteristics of CH4 Fluxes at the Water–Air Interface
3.4. Spatiotemporal Changes in the Abundance of the mcrA and pmoA Genes
3.5. Multiple Effects of Environmental Properties and Functional Microorganisms on CH4 Ebullition Flux
4. Discussion
4.1. Ebullition Dominates the CH4 Emissions from Cascade Reservoirs in the Upper Yellow River
Reservoirs | Zones | Diffusion Flux (mg m−2 h−1) | Ebullition Flux (mg m−2 h−1) |
---|---|---|---|
Mekong River (China) [33] | tropic | 0.18 ± 0.07 | 0.69 ± 0.69 |
Luanhe River Basin (China) [34] | temperate zone | 0.04 ± 0.02 | 0.11 ± 0.04 |
Tana River (Kenya) [35] | tropic | 0.08 ± 0.05 | |
Falling Creek Reservoir (America) [36] | temperate zone | 0.27 ± 0.05 | 0.67 ± 0.31 |
Zangmu reservoir (China) [37] | Tibet Plateau | 0.02 | |
This study | Qinghai Plateau | 0.08 ± 0.05 | 0.38 ± 0.41 |
4.2. Spatiotemporal Characteristics of CH4 Emissions from Cascade Reservoirs in the Upper Yellow River
4.3. The Ratio of the mcrA/pmoA Genes Affects CH4 Ebullition Flux
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maeck, A.; DelSontro, T.; McGinnis, D.F.; Fischer, H.; Flury, S.; Schmidt, M.; Fietzek, P.; Lorke, A. Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environ. Sci. Technol. 2013, 47, 8130–8137. [Google Scholar] [CrossRef] [PubMed]
- Soued, C.; Harrison, J.A.; Mercier-Blais, S.; Prairie, Y.T. Reservoir CO2 and CH4 emissions and their climate impact over the period 1900–2060. Nat. Geosci. 2022, 15, 700–705. [Google Scholar] [CrossRef]
- Bai, X.X.; Xu, Q.; Li, H.; Cheng, C.; He, Q. Lack of methane hotspot in the upstream dam: Case study in a tributary of the Three Gorges Reservoir, China. Sci. Total Environ. 2020, 754, 142151. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. In Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- WMO. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022; WMO: Geneva, Switzerland, 2023. [Google Scholar]
- Grinham, A.; Dunbabin, M.; Albert, S. Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir. Sci. Total Environ. 2018, 621, 1199–1207. [Google Scholar] [CrossRef]
- Descloux, S.; Chanudet, V.; Serça, D.; Guérin, F. Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir. Sci. Total Environ. 2017, 598, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, S.; Xia, X.; Battin, T.J.; Liu, S.; Wang, Q.; Liu, R.; Yang, Z.; Ni, J.; Stanley, E.H. Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau. Nat. Commun. 2022, 13, 950. [Google Scholar] [CrossRef]
- Wang, L.; Du, Z.H.; Wei, Z.Q.; Xu, Q.; Feng, Y.R.; Lin, P.L.; Lin, J.H.; Chen, S.Y.; Qiao, Y.P.; Shi, J.Z.; et al. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Sci. Total Environ. 2021, 801, 149692. [Google Scholar] [CrossRef] [PubMed]
- Maavara, T.; Chen, Q.; Van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef]
- Ji, D.B.; Long, L.H.; Xu, H.; Liu, D.F.; Song, L.X. Advances in study on cumulative effects of construction of cascaded reservoirs on water environment. Adv. Sci. Technol. Water Resour. 2017, 37, 7–14. [Google Scholar] [CrossRef]
- Shi, W.; Chen, Q.; Yi, Q.; Yu, J.; Ji, Y.; Hu, L.; Chen, Y. Carbon Emission from Cascade Reservoirs: Spatial Heterogeneity and Mechanisms. Environ. Sci. Technol. 2017, 51, 12175–12181. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; DelSontro, T.; Downing, J.A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 2019, 10, 1375. [Google Scholar] [CrossRef] [PubMed]
- Isidorova, A.; Grasset, C.; Mendonça, R.; Sobek, S. Methane formation in tropical reservoirs predicted from sediment age and nitrogen. Sci. Rep. 2019, 9, 11017. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Zang, K.P.; Song, L. Review on methanogens and methanotrophs metabolised by methane in wetland. Mar. Environ. Sci. 2020, 39, 488–496. [Google Scholar] [CrossRef]
- Zhang, L.W.; Xia, X.H.; Liu, S.D.; Zhang, S.B.; Li, S.L.; Wang, J.F.; Wang, G.Q.; Gao, H.; Zhang, Z.R.; Wang, Q.R.; et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau. Nat. Geosci. 2020, 13, 349–354. [Google Scholar] [CrossRef]
- Li, M.X.; Peng, C.H.; Zhang, K.R.; Xu, L.; Wang, J.M.; Yang, Y.; Li, P.; Liu, Z.L.; He, N.P. Headwater stream ecosystem: An important source of greenhouse gases to the atmosphere. Water Res. 2021, 190, 116738. [Google Scholar] [CrossRef]
- Deemer, B.R.; Harrison, J.A.; Li, S.; Beaulieu, J.J.; DelSontro, T.; Barros, N.; Bezerra-Neto, J.F.; Powers, S.M.; dos Santos, M.A.; Vonk, J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. Bioscience 2016, 66, 949–964. [Google Scholar] [CrossRef]
- Su, Y.M.; Liu, W.B.; Rahaman, M.H.; Chen, Z.B.; Zhai, J. Methane emission from water level fluctuation zone of the Three Gorges Reservoir: Seasonal variation and microbial mechanism. Sci. Total Environ. 2024, 912, 168935. [Google Scholar] [CrossRef]
- State Environmental Protection Administration. Methods for Water and Wastewater Monitoring and Analysis; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Meth. 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Johnson, K.M.; Hughes, J.E.; Donaghay, P.L.; Sieburth, J.M. Bottle-calibration static head space method for the determination of methane dissolved in seawater. Anal. Chem. 1990, 62, 2408–2412. [Google Scholar] [CrossRef]
- Li, F.; Yang, G.; Peng, Y.; Wang, G.; Qin, S.; Song, Y.; Fang, K.; Wang, J.; Yu, J.; Liu, L.; et al. Warming effects on methane fluxes differ between two alpine grasslands with contrasting soil water status. Agric. For. Meteorol. 2020, 290, 107988. [Google Scholar] [CrossRef]
- Lai, J.S.; Zou, Y.; Zhang, S.; Zhang, X.G.; Mao, L.F. glmm.hp: An R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 2022, 15, 1302–1307. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, H.; Li, Z.; Lu, L.H.; Tang, Q.; Su, Y.H.; Li, X.R. Research progress of aerobic methane oxidation process in inland waters. J. Lake Sci. 2021, 33, 1004–1017. [Google Scholar] [CrossRef]
- Li, S.; Bush, R.T.; Santos, I.R.; Zhang, Q.; Song, K.; Mao, R.; Wen, Z.; Lu, X.X. Large greenhouse gases emissions from China’s lakes and reservoirs. Water Res. 2018, 147, 13–24. [Google Scholar] [CrossRef]
- Song, C.; Gardner, K.H.; Klein, S.J.; Souza, S.P.; Mo, W. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renew. Sustain. Energy Rev. 2018, 90, 945–956. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.F.; Yuan, X.Z. General characteristics and research progress of methane emissions from freshwater ecosystems in China. Chin. Environ. Sci. 2020, 40, 3567–3579. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, C.; Liu, L.; Guo, J.S.; Fang, F.; Chen, Y.B. Ebullition fluxes of CO2 and CH4 in Pengxi River, Three Gorges Reservoir. J. Lake Sci. 2014, 26, 789–798. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, S.; Xiao, S.; Yu, K.; Fang, X.; Xia, L.; Wang, J.; Liu, S.; Freeman, C.; Zou, J. Global methane and nitrous oxide emissions from inland waters and estuaries. Glob. Change Biol. 2022, 28, 4713–4725. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.A.; Prairie, Y.T.; Mercier-Blais, S.; Soued, C. Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res) Model. Glob. Biogeochem. Cycle 2021, 35, e2020GB006888. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.; Delwiche, K.; Long, L.; Liu, J.; Liu, D.; Wang, C.; Bodmer, P.; Lorke, A. Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Res. 2020, 186, 116319. [Google Scholar] [CrossRef]
- Yang, F.Y. The Study of Production, Emission and Influence Mechanism of Methane in Cascade Reservoirs of Luanhe River Basin. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2022. [Google Scholar]
- Okuku, E.O.; Bouillon, S.; Tole, M.; Borges, A.V. Diffusive emissions of methane and nitrous oxide from a cascade of tropical hydropower reservoirs in Kenya. Lakes Reserv. Res. Manag. 2019, 24, 127–135. [Google Scholar] [CrossRef]
- McClure, R.; Lofton, M.; Chen, S.; Krueger, K.; Little, J.; Carey, C. The magnitude and drivers of methane ebullition and diffusion vary on a longitudinal gradient in a small freshwater reservoir. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005205. [Google Scholar] [CrossRef]
- Yang, M.; Hu, M.; Yang, T.; Zhang, L.; Wang, Q.; Yuan, S.; Ba, Z.; Xia, X. Greenhouse gas emissions from high-altitude hydropower reservoir: An example of the Zangmu reservoir on the Yarlung Tsangpo. Acta Sci. Cirumstant. 2022, 42, 188–194. [Google Scholar] [CrossRef]
- Stanley, E.H.; Casson, N.J.; Christel, S.T.; Crawford, J.T.; Loken, L.C.; Oliver, S.K. The ecology of methane in streams and rivers: Patterns, controls, and global significance. Ecol. Monogr. 2016, 86, 146–171. [Google Scholar] [CrossRef]
- Gudasz, C.; Bastviken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-controlled organic carbon mineralization in lake sediments. Nature 2010, 466, 478–481. [Google Scholar] [CrossRef]
- Pu, Y.N.; Jia, L.; Yang, S.J.; Qin, Z.H.; Su, R.M.Z.; Zhao, J.Y.; Zhang, M. The methane ebullition flux over algae zone of Lake Taihu. Chin. Environ. Sci. 2018, 38, 3914–3924. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Chen, H.; Yuan, X.; Peng, C.; Yue, J.; Zhang, Q.; Zhou, L. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Sci. Total Environ. 2018, 622–623, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K. The global methane budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Harrison, J.A.; Deemer, B.R.; Birchfield, M.K.; O’Malley, M.T. Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environ. Sci. Technol. 2017, 51, 1267–1277. [Google Scholar] [CrossRef]
- Tao, Y.C.; Fu, K.D.; Zhang, J.; Yang, L.S.; Yuan, X. Study on CO2 and CH4 emission fluxes from Lancang River cascade reservoirs. Clim. Change Res. 2024, 20, 107–117. [Google Scholar] [CrossRef]
- Du, Q.Q.; Li, B.G.; Cai, H.M.; Deng, Y.; Wang, Y.C. Hydrochemical Characteristics of Cascade Reservoirs Waters along the Langcangjiang River and the Relative Influence on CO2 Flux at Water/Air Interface. Earth Environ. 2023, 51, 36–46. [Google Scholar] [CrossRef]
- Wen, P.; Tang, J.; Wang, Y.Q.; Liu, X.M.; Yu, Z.; Zhou, S.G. Hyperthermophilic composting significantly decreases methane emissions: Insights into the microbial mechanism. Sci. Total Environ. 2021, 784, 147179. [Google Scholar] [CrossRef] [PubMed]
- Emerson, J.B.; Varner, R.K.; Wik, M.; Parks, D.H.; Neumann, R.B.; Johnson, J.E.; Singleton, C.M.; Woodcroft, B.J.; Tollerson, R.; Owusu-Dommey, A.; et al. Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes. Nat. Commun. 2021, 12, 5815. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.D.; Chen, X.; Sun, S.Y.; Xin, Y.; Liu, L.; Xia, X.H. Strong CH4 emissions modulated by hydrology and bed sediment properties in Qinghai-Tibetan Plateau rivers. J. Hydrol. 2023, 617, 129053. [Google Scholar] [CrossRef]
- DelSontro, T.; Boutet, L.; St-Pierre, A.; del Giorgio, P.A.; Prairie, Y.T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 2016, 61, S62–S77. [Google Scholar] [CrossRef]
- Ren, L.; Song, C.; Wu, W.; Guo, M.; Zhou, X. Reservoir effects on the variations of the water temperature in the upper Yellow River, China, using principal component analysis. J. Environ. Manag. 2020, 262, 110339. [Google Scholar] [CrossRef]
- Ren, Y.J.; Deng, Z.M.; Xie, Y.H.; Zhu, L.L.; Chen, X.R.; Zhang, C.Y.; Chen, X.S.; Li, F.; Zhou, Y.A. Estimation of methane diffusion and ebullition flux and water environmental controls during flooding period in Lake Dongting wetlands. J. Lake Sci. 2019, 31, 1075–1087. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Ganjurjav, H.; Hu, G.; Qin, X.; Gao, Q. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau. Sci. Total Environ. 2020, 705, 135818. [Google Scholar] [CrossRef]
- Bodelier, P.L.E.; Laanbroek, H.J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 2004, 47, 265–277. [Google Scholar] [CrossRef]
- Barros, N.; Cole, J.J.; Tranvik, L.J.; Prairie, Y.T.; Bastviken, D.; Huszar, V.L.M.; del Giorgio, P.; Roland, F. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 2011, 4, 593–596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Mao, X.; Xia, L.; Tang, W.; Yu, H.; Zhang, Z.; Xiao, F.; Ji, H.; Ma, Y. Controlling Methane Ebullition Flux in Cascade Reservoirs of the Upper Yellow River by the Ratio of mcrA to pmoA Genes. Water 2024, 16, 2565. https://doi.org/10.3390/w16182565
Wu Y, Mao X, Xia L, Tang W, Yu H, Zhang Z, Xiao F, Ji H, Ma Y. Controlling Methane Ebullition Flux in Cascade Reservoirs of the Upper Yellow River by the Ratio of mcrA to pmoA Genes. Water. 2024; 16(18):2565. https://doi.org/10.3390/w16182565
Chicago/Turabian StyleWu, Yi, Xufeng Mao, Liang Xia, Wenjia Tang, Hongyan Yu, Ziping Zhang, Feng Xiao, Haichuan Ji, and Yuanjie Ma. 2024. "Controlling Methane Ebullition Flux in Cascade Reservoirs of the Upper Yellow River by the Ratio of mcrA to pmoA Genes" Water 16, no. 18: 2565. https://doi.org/10.3390/w16182565
APA StyleWu, Y., Mao, X., Xia, L., Tang, W., Yu, H., Zhang, Z., Xiao, F., Ji, H., & Ma, Y. (2024). Controlling Methane Ebullition Flux in Cascade Reservoirs of the Upper Yellow River by the Ratio of mcrA to pmoA Genes. Water, 16(18), 2565. https://doi.org/10.3390/w16182565