Evolution Characteristics of Heilongtan Spring Discharge and Its Response Law to Precipitation in Lijiang City, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Site Description
2.2. Data Sources
3. Methods
3.1. Mann–Kendall Mutation Test
3.2. Wavelet Analysis
3.3. Vector Autoregression
4. Results
4.1. Analysis of the Discharge Dynamics of the Heilongtan Spring
4.2. Outflow Conditions of Heilongtan Spring
4.3. Mutation Test Analysis
4.4. Characteristics of Cyclical Changes
4.4.1. Precipitation Wavelet Transform Analysis
4.4.2. Discharge Wavelet Transform Analysis
4.4.3. Wavelet Variance Test and Significance Test
4.5. Analysis of the Response of Spring Level to Precipitation
5. Discussion
5.1. Water Resources Conservation
5.2. Water Quality Protection
6. Conclusions
- (1)
- Between 1988 and 2021, Heilongtan Springs’ discharge rate substantially decreased, with an annual variation of 0.05 m3/s. The discharge rate of Heilongtan Springs follows a similar pattern to the water level, forming a “V” shape throughout the year. The average monthly water level and discharge rate are at their lowest in June and July and reach their maximum values in October and November. The water level warning line for the drying up of Heilongtan Spring was set at 2407.7 m
- (2)
- The trend of Heilongtan Spring discharge and Lijiang City precipitation change is similar. However, there are discrepancies in the mutation points of annual precipitation at Lijiang station and Heilongtan Spring discharge, as determined through mutation test analysis. Both the spring discharge of Heilongtan and the precipitation of Lijiang City exhibit a significant principal cycle of 18 months in terms of temporal changes. The temporal variation of the spring discharge cycle in the time series aligns with the trend in precipitation. The periods from 1988 to 2011 and 2018 to 2021 had consistently high spring discharge, while 2012 to 2017 consistently saw low spring discharge.
- (3)
- A long-term, stable relationship exists between the water level of the Heilongtan Spring and precipitation in Lijiang City. This relationship can be modeled using a vector autoregression (VAR) approach. The VAR model demonstrates a clear lagged response of Heilongtan Spring’s water level to the precipitation in Lijiang City. The fourth month’s precipitation has the most substantial impact on the water level of the Heilongtan Spring. This, along with the correlation analysis, confirms the accuracy of the simulation results from the VAR model. The VAR model is an effective tool for evaluating how groundwater levels respond to precipitation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, A.; Zhang, Y.; Zhang, E.; Li, Z.; Yu, J.; Wang, H.; Yang, J.; Wang, Y. Review: Groundwater resources and related environmental issues in China. Hydrogeol. J. 2018, 26, 1325–1337. [Google Scholar] [CrossRef]
- Li, R.; Yan, Y.; Xu, J.; Yang, C.; Chen, S.; Wang, Y.; Zhang, Y. Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China. J. Contam. Hydrol. 2024, 264, 104344. [Google Scholar] [CrossRef] [PubMed]
- Abel, N.; Peiyue, L. Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a novel industrial water quality index (IndWQI) in the Guanzhong Basin, China. Geochemistry 2023, 83, 125922. [Google Scholar]
- Zhang, X.; Ding, B.; Hou, Y.; Feng, P.; Liu, D.L.; Srinivasan, R.; Chen, Y. Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions. Agric. Water Manag. 2024, 292, 108674. [Google Scholar] [CrossRef]
- Min, S.; Huili, G.; Mingliang, G.; Beibei, C.; Shunkang, Z.; Chaofan, Z. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sens. 2020, 12, 3579. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Y.; Eiman, F.; McClain, M.E.; Wang, X.S. Towards sustainable groundwater development with effective measures under future climate change in Beijing Plain, China. J. Hydrol. 2024, 633, 130951. [Google Scholar] [CrossRef]
- Hao, P.; Wei, Y.; Sacha, N.F.A.; Shuang, X.; Xinya, L.; Geng, N.; Taotao, L. Hydrochemical characteristics and health risk assessment of groundwater in karst areas of southwest China: A case study of Bama, Guangxi. J. Clean. Prod. 2022, 341, 130872. [Google Scholar]
- Zhang, L.; Qin, X.; Tang, J.; Liu, W.; Yang, H. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl. Geochem. 2016, 77, 80–88. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, W.; Tian, W.; Gao, Y.; Wang, X.; Tian, Y.; Li, J.; Zhang, X. Groundwater hydrogeochemical characterization and quality assessment based on integrated weight matter-element extension analysis in Ningxia, upper Yellow River, northwest China. Ecol. Indic. 2022, 135, 108525. [Google Scholar] [CrossRef]
- Sun, K.; Hu, L.; Liu, X. The influences of sponge city construction on spring discharge in Jinan city of China. Hydrol. Res. 2020, 51, 959–975. [Google Scholar] [CrossRef]
- Riyuan, X.; Haiping, L.; Jianwen, C.; Liangjie, Z.; Jie, W.; Song, L. Characteristics of groundwater resources of karst areas in the Southern China and water resources guarantee countermeasures. Geol. China 2022, 49, 1139–1153. (In Chinese) [Google Scholar]
- Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2013, 69, 2427–2435. [Google Scholar] [CrossRef]
- Sun, W.; Song, J.; Yang, W.; Zheng, Y.; Li, C.; Kuang, D. Distribution of carbonate rocks and variation analysis of karst water resources in China. Carbonates Evaporites 2020, 35, 121. [Google Scholar] [CrossRef]
- Cao, J.; Xia, R. Exploitation models for different types of underground rivers in karst mountain areas of southwestern China. Carsologica Sin. 2017, 36, 609–617, (In Chinese with abstract in English). [Google Scholar]
- Song, X.; Hao, H.; Liu, W.; Wang, Q.; An, L.; Yeh, T.-C.J.; Hao, Y. Spatial-temporal behavior of precipitation driven karst spring discharge in a mountain terrain. J. Hydrol. 2022, 612, 128116. [Google Scholar] [CrossRef]
- Kadic, A.; Denic-Jukic, V.; Jukic, D. Exceeding Turbidity versus Karst Spring Discharge during Single Rainfall Events: The Case of the Jadro Spring. Water 2023, 15, 2589. [Google Scholar] [CrossRef]
- Adji, T.N.; Bahtiar, I.Y. Rainfall-discharge relationship and karst flow components analysis for karst aquifer characterization in Petoyan Spring, Java, Indonesia. Environ. Earth Sci. 2016, 75, 735. [Google Scholar] [CrossRef]
- Jimenez-Martinez, J.; Smith, M.; Pope, D. Prediction of groundwater-induced flooding in a chalk aquifer for future climate change scenarios. Hydrol. Process. 2016, 30, 573–587. [Google Scholar] [CrossRef]
- Charlier, J.-B.; Ladouche, B.; Marechal, J.-C. Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. J. Hydrol. 2015, 523, 610–623. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Hao, H. The Effects of Climate Variation and Anthropogenic Activity on Karst Spring Discharge Based on the Wavelet Coherence Analysis and the Multivariate Statistical. Sustainability 2023, 15, 8798. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, S. Distribution features of karst water in Yunnan. Carsologica Sin. 2011, 30, 253–259, (In Chinese with abstract in English). [Google Scholar]
- Zhao, J. The karst landscape tourism resources in shandong province and the wat for development. Carsologica Sin. 2003, 22, 324–331, (In Chinese with abstract in English). [Google Scholar]
- Wei, Y.; Chen, W.; Luo, S.; Pan, X.; Li, C.; Luo, Q. Karst Landscape Features of theWumeng Mountains and Its Tourism Potential Analysis for Poverty Alleviation. Trop. Geogr. 2020, 40, 10–26. [Google Scholar]
- Artugyan, L. Geomorphosites Assessment in Karst Terrains: Anina Karst Region (Banat Mountains, Romania). Geoheritage 2017, 9, 153–162. [Google Scholar] [CrossRef]
- Kang, X.; Wang, Y.; Zhang, H.; Cao, J. Hydrogeologic features and influence factors of zero flow of the Heilongtan spring group in Lijiang. Carsologica Sin. 2013, 32, 398–403, (In Chinese with abstract in English). [Google Scholar]
- Cen, X.; Xu, M.; Qi, J.; Zhang, Q.; Shi, H. Characterization of karst conduits by tracer tests for an artificial recharge scheme. Hydrogeol. J. 2021, 29, 2381–2396. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, R.; Yang, M.; Hu, J.; Wu, G.; Fan, Y. Artificial neural network simulation to zero flow of the Heilongtan spring groups in Lijiang. Carsologica Sin. 2013, 32, 391–397, (In Chinese with abstract in English). [Google Scholar]
- Xiao, H.; Senlin, W.; Rui, H.; Kexun, Z. Research and application of groundwater level as a water replenishment control signal in the restoration of Lijiang Heilongtan spring group. Carsologica Sin. 2024, 43, 302–313, (In Chinese with abstract in English). [Google Scholar]
- Yang, Y.; Dai, E.; Yin, J.; Jia, L.; Zhang, P.; Sun, J. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. [Google Scholar] [CrossRef]
- Rajbanshi, J.; Das, S. Monitoring land sensitivity to desertification using the ESAI approach and evaluation of the key indicators: A spatio-temporal study in India. Land Degrad. Dev. 2021, 32, 3045–3061. [Google Scholar] [CrossRef]
- Yang, Q.; Zheng, J.; Zhu, H. Influence of spatiotemporal change of temperature and rainfall on major grain yields in southern Jiangsu Province, China. Glob. Ecol. Conserv. 2020, 21, e00818. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Zheng, W. Wavelet Analysis of Dam Injection and Discharge in Three Gorges Dam and Reservoir with Precipitation and River Discharge. Water 2022, 14, 567. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Yin, Z.; Liu, M.; Zheng, W. Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol. Indic. 2023, 154, 110837. [Google Scholar] [CrossRef]
- Cao, S.L.; Li, X.Y.; You, R.F.; Diao, Y.J.; Wang, J.; Liu, Y. Investigation of the trend and cycles using the long-term records of annual precipitation in Shandong, China. J. Water Clim. Chang. 2022, 13, 3761–3775. [Google Scholar] [CrossRef]
- Yi, H.; Shu, H. The improvement of the Morlet wavelet for multi-period analysis of climate data. Comptes Rendus Geosci. 2012, 344, 483–497. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Geng, M.; Qian, Z.; Jiang, H.; Huang, B.; Huang, S.; Deng, B.; Peng, Y.; Xie, Y.; Li, F.; Zou, Y.; et al. Assessing the impact of water-sediment factors on water quality to guide river-connected lake water environment improvement. Sci. Total Environ. 2024, 912, 168866. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, Y.; Liu, S.; Zhong, P.-A.; Liu, H.; Li, R. Correlation assessment of NDVI and land use dynamics with water resources for the southern margin of Mu Us Sandy Land, China. Environ. Sci. Pollut. Res. 2022, 29, 17049–17061. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Miller, J.; Chen, J.; Re, V. Groundwater and climate change: Threats and opportunities. Hydrogeol. J. 2023, 31, 7–10. [Google Scholar] [CrossRef]
- Huang, J.; Cao, L.; Yu, F.; Liu, X.; Wang, L. Groundwater Drought and Cycles in Xuchang City, China. Front. Earth Sci. 2021, 9, 736305. [Google Scholar] [CrossRef]
- Cui, Y.; Liao, Z.; Wei, Y.; Xu, X.; Song, Y.; Liu, H. The Response of Groundwater Level to Climate Change and Human Activities in Baotou City, China. Water 2020, 12, 1078. [Google Scholar] [CrossRef]
- Poor, C.; Kaye, J.; Struck, R.; Gonzalez, R.; Dabrowska, J.; Kanclerz, J. Permeable Pavement in the Northwestern United States: Pollution Source or Treatment Option? Sustainability 2023, 15, 12926. [Google Scholar] [CrossRef]
- Lamhour, O.; El Bouazzaoui, I.; Perkumiené, D.; Safaa, L.; Aleinikovas, M.; Skema, M. Groundwater and Tourism: Analysis of Research Topics and Trends. Sustainability 2024, 16, 3723. [Google Scholar] [CrossRef]
Sequence | t-Statistic | Critical Value at 1% Significance Level | p-Value | Conclusion |
---|---|---|---|---|
water level | −4.4487 | −4.0478 | 0.0029 | stationary |
precipitation | −8.6628 | −4.0543 | 0.0000 | stationary |
Trace Test | Maximum Eigenvalue Test | ||||||||
---|---|---|---|---|---|---|---|---|---|
Null Hypothesis | Eigenvalue | Trace Statistic | 0.05 Critical Value | p-Value | Null Hypothesis | Eigenvalue | Max-Eigen Statistic | 0.05 Critical Value | p-Value |
r = 0 * | 0.312 | 48.105 | 15.494 | 0.000 | r = 0 * | 0.312 | 38.465 | 14.265 | 0.000 |
r ≤ 1 * | 0.089 | 9.6398 | 3.842 | 0.002 | r ≤ 1 * | 0.089 | 9.639 | 3.841 | 0.002 |
Lag | AIC | SC | logL |
---|---|---|---|
0 | 17.24 | 17.292 | −860.002 |
1 | 14.567 | 14.723 | −722.357 |
2 | 13.925 | 14.186 | −686.275 |
3 | 13.926 | 14.291 | −682.346 |
4 | 13.956 | 14.425 | −679.839 |
5 | 13.964 | 14.537 | −676.227 |
6 | 13.954 | 14.632 | −671.745 |
7 | 13.903 | 14.684 | −665.158 |
8 | 13.853 | 14.739 | −658.672 |
Water Level | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | |
---|---|---|---|---|---|---|---|---|---|
water level | 1 | −0.371 ** | −0.125 | 0.146 | 0.345 ** | 0.434 ** | 0.426 ** | 0.318 ** | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Li, W.; Fang, J.; Yang, P. Evolution Characteristics of Heilongtan Spring Discharge and Its Response Law to Precipitation in Lijiang City, China. Water 2024, 16, 2582. https://doi.org/10.3390/w16182582
Sun W, Li W, Fang J, Yang P. Evolution Characteristics of Heilongtan Spring Discharge and Its Response Law to Precipitation in Lijiang City, China. Water. 2024; 16(18):2582. https://doi.org/10.3390/w16182582
Chicago/Turabian StyleSun, Wenjie, Wenjie Li, Jinxin Fang, and Pinghong Yang. 2024. "Evolution Characteristics of Heilongtan Spring Discharge and Its Response Law to Precipitation in Lijiang City, China" Water 16, no. 18: 2582. https://doi.org/10.3390/w16182582
APA StyleSun, W., Li, W., Fang, J., & Yang, P. (2024). Evolution Characteristics of Heilongtan Spring Discharge and Its Response Law to Precipitation in Lijiang City, China. Water, 16(18), 2582. https://doi.org/10.3390/w16182582