Iron and Molybdenum Isotope Application for Tracing Industrial Contamination in a Highly Polluted River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Ion Exchange Chromatography
2.3.1. Fe Purification
2.3.2. Mo Purification
2.4. Mass Spectrometry
3. Results and Discussion
3.1. Industrial Wastewater
3.2. Monitoring of River Water
Sample ID | Sampling | Precipitation (mm) | Cr (ppb) | Cu (ppb) | Fe (ppb) | Sr (ppb) | Mo (ppb) | Pb (ppb) | d56/54Fe | 2 s.d. | d98/95Mo | 2 s.d. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | Time | ||||||||||||
B10930197 | 29 June 2020 | 21:00 | 0 | 2.72 | 4.44 | 323 | 675 | 49.3 | 0.887 | −0.080 | 0.081 | 0.64 | 0.08 |
B10930198 | 30 June 2020 | 9:00 | 31 | 12.5 | 5.05 | 509 | 853 | 45.1 | 1.301 | −0.092 | 0.085 | 0.40 | 0.08 |
B10930202 | 2 July 2020 | 9:00 | 4 | 3.81 | 9.76 | 767 | 547 | 17.0 | 2.717 | −0.060 | 0.051 | 1.07 | 0.08 |
B10930210 | 6 July 2020 | 21:00 | 0 | 3.35 | 4.78 | 492 | 641 | 26.9 | 1.034 | −0.105 | 0.061 | 0.85 | 0.07 |
B10930281 | 7 July 2020 | 21:00 | 2.5 | 2.59 | 4.05 | 389 | 707 | 26.1 | 1.155 | −0.212 | 0.085 | 0.68 | 0.03 |
B10930294 | 12 July 2020 | 21:00 | 0 | 0.94 | 3.49 | 114 | 535 | 22.8 | 0.618 | −0.356 | 0.111 | 0.49 | 0.07 |
B10930325 | 14 July 2020 | 9:00 | 0 | 5.44 | 4.41 | 454 | 584 | 24.0 | 0.803 | −0.089 | 0.048 | 0.49 | 0.08 |
B10930329 | 16 July 2020 | 9:00 | 20 | 20.2 | 17.39 | 5796 | 322 | 6.8 | 10.03 | 0.075 | 0.085 | 0.67 | 0.03 |
B10930330 | 16 July 2020 | 21:00 | 20 | 25.3 | 22.93 | 7815 | 331 | 6.2 | 13.05 | 0.035 | 0.085 | 0.90 | 0.08 |
B10930362 | 25 July 2020 | 21:00 | 1 | 2.30 | 2.77 | 223 | 562 | 12.3 | 0.344 | −0.024 | 0.048 | 0.71 | 0.08 |
B10930364 | 26 July 2020 | 21:00 | 0 | 0.64 | 2.67 | 36 | 559 | 13.1 | 0.407 | −0.149 | 0.085 | 0.53 | 0.03 |
B10930369 | 28 July 2020 | 9:00 | 5.5 | 1.51 | 3.91 | 360 | 577 | 18.4 | 0.900 | −0.230 | 0.051 | 0.59 | 0.08 |
B10930371 | 29 July 2020 | 9:00 | 16 | 2.68 | 23.85 | 637 | 604 | 14.9 | 3.297 | 0.015 | 0.048 | 0.71 | 0.08 |
B10930375 | 31 July 2020 | 9:00 | 3.5 | 5.27 | 6.10 | 707 | 501 | 24.4 | 1.281 | 0.022 | 0.048 | 0.58 | 0.08 |
B10930378 | 1 August 2020 | 21:00 | 0 | 2.11 | 4.39 | 244 | 466 | 16.0 | 1.243 | −0.091 | 0.048 | 0.54 | 0.08 |
B10930389 | 4 August 2020 | 9:00 | 103 | 12.0 | 20.40 | 5753 | 176 | 3.7 | 6.905 | 0.082 | 0.081 | 0.59 | 0.03 |
B10930390 | 4 August 2020 | 21:00 | 103 | 11.3 | 19.46 | 5680 | 176 | 3.5 | 6.745 | 0.093 | 0.081 | 0.54 | 0.08 |
B10930393 | 6 August 2020 | 9:00 | 4.5 | 4.16 | 5.39 | 1009 | 414 | 14.9 | 2.909 | −0.008 | 0.085 | 0.49 | 0.08 |
B10930394 | 6 August 2020 | 21:00 | 4.5 | 4.70 | 5.45 | 992 | 421 | 14.9 | 2.673 | −0.036 | 0.081 | 0.53 | 0.08 |
B10930395 | 7 August 2020 | 9:00 | 4.5 | 16.1 | 11.64 | 2189 | 473 | 25.0 | 4.752 | 0.145 | 0.048 | 0.61 | 0.08 |
B10930396 | 7 August 2020 | 21:00 | 4.5 | 15.3 | 11.69 | 2025 | 489 | 24.6 | 4.337 | 0.120 | 0.048 | 0.57 | 0.09 |
B10930402 | 10 August 2020 | 21:00 | 2 | 1.38 | 4.48 | 241 | 695 | 45.3 | 0.591 | −0.030 | 0.085 | 0.46 | 0.08 |
3.3. Fe and Mo Stable Isotopes as Tracers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adesiyan, I.M.; Bisi-Johnson, M.; Aladesanmi, O.T.; Okoh, A.I.; Ogunfowokan, A.O. Concentrations and Human Health Risk of Heavy Metals in Rivers in Southwest Nigeria. J. Health Pollut. 2018, 8, 180907. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Hakeem, K.R., Bhat, R.A., Qadri, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar]
- Sánchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; García, M.G.; Travieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- Bollinger, J.E.; Steinberg, L.J.; Harrison, M.J.; Crews, J.P.; Englande, A.J.; Velasco-Gonzales, C.; White, L.E.; George, W.J. Comparative analysis of nutrient data in the lower Mississippi River. Water Res. 1999, 33, 2627–2632. [Google Scholar] [CrossRef]
- Veevers, J.J.; Saeed, A.; Belousova, E.A.; Griffin, W.L. U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Sci. Rev. 2005, 68, 245–279. [Google Scholar] [CrossRef]
- Hobson, K.A. Tracing Origins and Migration of Wildlife Using Stable Isotopes: A Review. Oecologia 1999, 120, 314–326. [Google Scholar] [CrossRef]
- Grousset, F.E.; Biscaye, P.E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem. Geol. 2005, 222, 149–167. [Google Scholar] [CrossRef]
- Fenech, C.; Rock, L.; Nolan, K.; Tobin, J.; Morrissey, A. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: A review. Water Res. 2012, 46, 2023–2041. [Google Scholar] [CrossRef]
- Kong, J.; Guo, Q.; Wei, R.; Strauss, H.; Zhu, G.; Li, S.; Song, Z.; Chen, T.; Song, B.; Zhou, T.; et al. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. Sci. Total Environ. 2018, 637–638, 1035–1045. [Google Scholar] [CrossRef]
- Matiatos, I.; Wassenaar, L.I.; Monteiro, L.R.; Venkiteswaran, J.J.; Gooddy, D.C.; Boeckx, P.; Sacchi, E.; Yue, F.J.; Michalski, G.; Alonso-Hernández, C.; et al. Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Commun. Earth Environ. 2021, 2, 52. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Blum, J.D.; Erel, Y. 5.12—Radiogenic Isotopes in Weathering and Hydrology. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 365–392. [Google Scholar]
- Rosman, K.J.R.; Chisholm, W.; Boutron, C.F.; Candelone, J.P.; Görlach, U. Isotopic evidence for the source of lead in Greenland snows since the late 1960s. Nature 1993, 362, 333–335. [Google Scholar] [CrossRef]
- Gross, B.H.; Kreutz, K.J.; Osterberg, E.C.; McConnell, J.R.; Handley, M.; Wake, C.P.; Yalcin, K. Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes. J. Geophys. Res. Atmos. 2012, 117, D16307. [Google Scholar] [CrossRef]
- Lahd Geagea, M.; Stille, P.; Gauthier-Lafaye, F.; Millet, M. Tracing of Industrial Aerosol Sources in an Urban Environment Using Pb, Sr, and Nd Isotopes. Environ. Sci. Technol. 2008, 42, 692–698. [Google Scholar] [CrossRef]
- Wu, P.-C.; Huang, K.-F. Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci. Rep. 2021, 11, 7593. [Google Scholar] [CrossRef]
- Nigro, A.; Sappa, G.; Barbieri, M. Strontium Isotope as Tracers of Groundwater Contamination. Procedia Earth Planet. Sci. 2017, 17, 352–355. [Google Scholar] [CrossRef]
- Sankoh, A.A.; Derkyi, N.S.A.; Frazer-williams, R.A.D.; Laar, C.; Kamara, I. A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries. Water 2022, 14, 35. [Google Scholar] [CrossRef]
- Ranade, V.V.; Bhandari, V.M. Chapter 1—Industrial Wastewater Treatment, Recycling, and Reuse: An Overview. In Industrial Wastewater Treatment, Recycling and Reuse; Ranade, V.V., Bhandari, V.M., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 1–80. [Google Scholar]
- Rosenwinkel, K.-H.; Austermann-Haun, U.; Meyer, H. Industrial Wastewater Sources and Treatment Strategies. In Biotechnology Set; Wiley: Hoboken, NJ, USA, 2001; pp. 191–215. [Google Scholar]
- Shahedi, A.; Darban, A.K.; Taghipour, F.; Jamshidi-Zanjani, A. A review on industrial wastewater treatment via electrocoagulation processes. Curr. Opin. Electrochem. 2020, 22, 154–169. [Google Scholar] [CrossRef]
- Barling, J.; Arnold, G.L.; Anbar, A.D. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet. Sci. Lett. 2001, 193, 447–457. [Google Scholar] [CrossRef]
- Barling, J.; Anbar, A.D. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett. 2004, 217, 315–329. [Google Scholar] [CrossRef]
- Siebert, C.; Nagler, T.F.; von Blanckenburg, F.; Kramers, J.D. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet. Sci. Lett. 2003, 211, 159–171. [Google Scholar] [CrossRef]
- Anbar, A.D. Molybdenum stable isotopes: Observations, interpretations and directions. In Geochemistry of Non-Traditional Stable Isotopes; Albarède, F., Johnson, C., Beard, B., Eds.; Reviews in Mineralogy & Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2004; Volume 55, pp. 429–454. [Google Scholar]
- Arnold, G.L.; Anbar, A.D.; Barling, J.; Lyons, T.W. Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science 2004, 304, 87–90. [Google Scholar] [CrossRef]
- Siebert, C.; McManus, J.; Bice, A.; Poulson, R.; Berelson, W.M. Molybdenum isotope signatures in continental margin marine sediments. Earth Planet. Sci. Lett. 2006, 241, 723–733. [Google Scholar] [CrossRef]
- Barling, J.; Yang, J.; Crystal Liang, Y.-H. Molybdenum Isotopes. In Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth; White, W.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–6. [Google Scholar]
- Hannah, J.L.; Stein, H.J.; Wieser, M.E.; de Laeter, J.R.; Varner, M.D. Molybdenum isotope variations in molybdenite: Vapor transport and Rayleigh fractionation of Mo. Geology 2007, 35, 703–706. [Google Scholar] [CrossRef]
- Mathur, R.; Brantley, S.; Anbar, A.; Munizaga, F.; Maksaev, V.; Newberry, R.; Vervoort, J.; Hart, G. Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Miner. Depos. 2010, 45, 43–50. [Google Scholar] [CrossRef]
- Liermann, L.J.; Guynn, R.L.; Anbar, A.; Brantley, S.L. Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem. Geol. 2005, 220, 285–302. [Google Scholar] [CrossRef]
- Wasylenki, L.E.; Anbar, A.D.; Liermann, L.J.; Mathur, R.; Gordon, G.W.; Brantley, S.L. Isotope fractionation during microbial metal uptake measured by MC-ICP-MS. J. Anal. At. Spectrom. 2007, 22, 905–910. [Google Scholar] [CrossRef]
- O’Sullivan, E.M.; Nägler, T.F.; Babechuk, M.G. Unusually heavy stable Mo isotope signatures of the Ottawa River: Causes and implications for global riverine Mo fluxes. Chem. Geol. 2021, 568, 120039. [Google Scholar] [CrossRef]
- Matsuoka, K.; Tatsuyama, T.; Takano, S.; Sohrin, Y. Distribution of stable isotopes of Mo and W from a river to the ocean: Signatures of anthropogenic pollution. Front. Mar. Sci. 2023, 10, 1182668. [Google Scholar] [CrossRef]
- Ekka, S.V.; Liang, Y.-H.; Huang, K.-F.; Lee, D.-C. Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources. Water 2023, 15, 1873. [Google Scholar] [CrossRef]
- Chappaz, A.; Lyons, T.W.; Gordon, G.W.; Anbar, A.D. Isotopic Fingerprints of Anthropogenic Molybdenum in Lake Sediments. Environ. Sci. Technol. 2012, 46, 10934–10940. [Google Scholar] [CrossRef]
- Lane, S.; Proemse, B.C.; Tennant, A.; Wieser, M.E. Concentration measurements and isotopic composition of airborne molybdenum collected in an urban environment. Anal. Bioanal. Chem. 2013, 405, 2957–2963. [Google Scholar] [CrossRef]
- King, E.K.; Thompson, A.; Chadwick, O.A.; Pett-Ridge, J.C. Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect. Chem. Geol. 2016, 445, 54–67. [Google Scholar] [CrossRef]
- Rouxel, O.; Dobbek, N.; Ludden, J.; Fouquet, Y. Iron isotope fractionation during oceanic crust alteration. Chem. Geol. 2003, 202, 155–182. [Google Scholar] [CrossRef]
- Fantle, M.S.; DePaolo, D.J. Iron isotopic fractionation during continental weathering. Earth Planet. Sci. Lett. 2004, 228, 547–562. [Google Scholar] [CrossRef]
- Hofmann, A.; Bekker, A.; Dirks, P.; Gueguen, B.; Rumble, D.; Rouxel, O.J. Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data. Miner. Depos. 2014, 49, 75–100. [Google Scholar] [CrossRef]
- Bilenker, L.D.; Simon, A.C.; Reich, M.; Lundstrom, C.C.; Gajos, N.; Bindeman, I.; Barra, F.; Munizaga, R. Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim. Cosmochim. Acta 2016, 177, 94–104. [Google Scholar] [CrossRef]
- Toner, B.M.; Rouxel, O.J.; Santelli, C.M.; Bach, W.; Edwards, K.J. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations. Front. Microbiol. 2016, 7, 648. [Google Scholar] [CrossRef]
- Williams, H.M.; Peslier, A.H.; McCammon, C.; Halliday, A.N.; Levasseur, S.; Teutsch, N.; Burg, J.P. Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity. Earth Planet. Sci. Lett. 2005, 235, 435–452. [Google Scholar] [CrossRef]
- Teng, F.-Z.; Dauphas, N.; Helz, R.T. Iron Isotope Fractionation During Magmatic Differentiation in Kilauea Iki Lava Lake. Science 2008, 320, 1620–1622. [Google Scholar] [CrossRef]
- Williams, H.M.; Wood, B.J.; Wade, J.; Frost, D.J.; Tuff, J. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet. Sci. Lett. 2012, 321–322, 54–63. [Google Scholar] [CrossRef]
- Craddock, P.R.; Warren, J.M.; Dauphas, N. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet. Sci. Lett. 2013, 365, 63–76. [Google Scholar] [CrossRef]
- Yearbook of Environmental Protection Statistics, Taiwan Area, Republic of China; Environmental Protection Administration Executive Yuan: Taipei, Taiwan, 2002. Available online: https://www.moenv.gov.tw/DisplayFile.aspx?FileID=89B64664427ECBB9&P=a6e0437b-1dc1-43b4-9f5d-b0abbe164992 (accessed on 1 December 2023).
- Yearbook of Environmental Protection Statistics, Republic of China; Environmental Protection Administration, Executive Yuan: Taipei, Taiwan, 2022. Available online: https://www.moenv.gov.tw/DisplayFile.aspx?FileID=816CEB3CD9DC2E0A&P=9e93982e-8dcf-4b7a-abd6-92201ad9b063 (accessed on 1 December 2023).
- Water Resource Agency Hydrological Yearbook; Water Resource Agency, Ministry of Economic Affair, Taiwan: Taiwan, China, 2020.
- Liang, Y.-H.; Huang, K.-Y.A.; Lee, D.-C.; Pang, K.-N.; Chen, S.-H. High-precision iron isotope analysis of whole blood, erythrocytes, and serum in adults. J. Trace Elem. Med. Biol. 2020, 58, 126421. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-H.; Halliday, A.N.; Siebert, C.; Fitton, J.G.; Burton, K.W.; Wang, K.-L.; Harvey, J. Molybdenum isotope fractionation in the mantle. Geochim. Cosmochim. Acta 2017, 199, 91–111. [Google Scholar] [CrossRef]
- Craddock, P.R.; Dauphas, N. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostand. Geoanalytical Res. 2011, 35, 101–123. [Google Scholar] [CrossRef]
- Millet, M.-A.; Baker, J.A.; Payne, C.E. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike. Chem. Geol. 2012, 304–305, 18–25. [Google Scholar] [CrossRef]
- Gaschnig, R.M.; Reinhard, C.T.; Planavsky, N.J.; Wang, X.; Asael, D.; Jackson, M.G. The impact of primary processes and secondary alteration on the stable isotope composition of ocean island basalts. Chem. Geol. 2021, 581, 120416. [Google Scholar] [CrossRef]
- Willbold, M.; Hibbert, K.; Lai, Y.-J.; Freymuth, H.; Hin, R.C.; Coath, C.; Vils, F.; Elliott, T. High-Precision Mass-Dependent Molybdenum Isotope Variations in Magmatic Rocks Determined by Double-Spike MC-ICP-MS. Geostand. Geoanalytical Res. 2016, 40, 389–403. [Google Scholar] [CrossRef]
- Wu, P.-C. Applications of Sr-Nd-Pb Isotopes for Tracing Sources and Transport Processes in Atmospheric and Aquatic Environments. Ph.D. Thesis, National Central University, Taoyuan City, Taiwan, 2022. [Google Scholar]
- Ekka, S.V.; Liang, Y.-H.; Huang, K.-F.; Huang, J.-C.; Lee, D.-C. Riverine molybdenum isotopic fractionation in small mountainous rivers of Taiwan: The effect of chemical weathering and lithology. Chem. Geol. 2023, 620, 121349. [Google Scholar] [CrossRef]
- Lin, Z.-J. The Application of Stable Iron Isotope in Danshui River Catchment. Master’s Thesis, National Taiwan University, Taiwan, 2019. [Google Scholar]
- Huang, K.-F.; Lee, D.-C.; Wu, P.-C.; Lin, P.-Y.; Huang, P.-R. Tracing Sources of Metal Pollutions in the Aquatic Environment Using MC-ICP-MS (2/2); Environmental Protection Administration Executive Yuan: Taipei, Taiwan, 2020; p. 166.
Classification | Industry | Sampling Date | Type of Sewage | Cr (ppb) | Cu (ppb) | Fe (ppb) | Sr (ppb) | Mo (ppb) | Pb (ppb) | d56/54Fe | 2 s.d. | d98/95Mo | 2 s.d. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Manufacture of Basic Metals | |||||||||||||
BM1 | 7 May 2020 | Untreated | 2.42 × 104 | 1.16 × 104 | 1.38 × 107 | 3768 | 2387 | 244 | 0.360 | 0.069 | 0.06 | 0.09 | |
7 May 2020 | Treated | 194 | 18 | 979 | 429 | 24.2 | 0.663 | 0.376 | 0.051 | 0.67 | 0.09 | ||
Manufacture of fabricated metal | |||||||||||||
FM1 | 7 July 2020 | Untreated | 637 | 2896 | 7.60 × 105 | 414 | 286 | 139 | 0.370 | 0.048 | −0.19 | 0.09 | |
7 July 2020 | Treated | 38.2 | 10.0 | 216 | 179 | 124 | 0.880 | 0.246 | 0.048 | 0.31 | 0.09 | ||
Manufacture of Food Products | |||||||||||||
FP1 | 7 July 2020 | Untreated | 18.2 | 96.9 | 1360 | 819 | 4.98 | 8.72 | 0.216 | 0.051 | 0.37 | 0.09 | |
Treatment of metal surface | |||||||||||||
MS1 | 7 May 2020 | Untreated | 8.10 × 104 | 1678 | 4.05 × 105 | 62 | 1618 | 49.8 | 0.384 | 0.048 | 0.01 | 0.09 | |
7 May 2020 | Treated | 33.9 | 7.65 | 234 | 1377 | 340 | 1.05 | −0.020 | 0.051 | 0.18 | 0.09 | ||
MS2 | 7 May 2020 | Treated | 15.5 | 16.8 | 153 | 558 | 1.90 | 1.36 | 0.450 | 0.041 | |||
MS3 | 7 May 2020 | Treated | 28.0 | 3.63 | 133 | 563 | 9.76 | 0.613 | 0.098 | 0.095 | 0.66 | 0.06 | |
MS4 | 7 May 2020 | Untreated | 8.58 × 105 | 1903 | 1.50 × 105 | 650 | 1088 | 62.8 | 0.462 | 0.069 | 0.22 | 0.09 | |
7 May 2020 | Treated | 5.96 | 2.40 | 56.2 | 511 | 88.5 | 0.613 | −0.610 | 0.051 | 0.54 | 0.09 | ||
7 July 2020 | Treated | 11.5 | 1.25 | 61.6 | 555 | 411 | 0.180 | 0.414 | 0.136 | 0.47 | 0.09 | ||
MS5 | 7 July 2020 | Treated | 1.86 | 4.34 | 449 | 186 | 59.1 | 0.320 | −0.946 | 0.013 | 0.50 | 0.09 | |
MS6 | 7 July 2020 | Untreated | 1.25 × 106 | 268 | 4.25 × 104 | 618 | 4.48 | 18.5 | 0.314 | 0.130 | 0.37 | 0.07 | |
7 July 2020 | Treated | 3.34 | 7.69 | 247 | 1391 | 1.69 | 0.580 | −0.463 | 0.048 | 0.78 | 0.08 | ||
Industrial sewer system | |||||||||||||
SS1 | 7 May 2020 | Untreated | 19.9 | 22.04 | 5705 | 471 | 2666 | 1.000 | 0.323 | 0.095 | 0.10 | 0.07 | |
7 May 2020 | Treated | 7.45 | 3.89 | 548 | 497 | 3334 | 0.825 | −0.161 | 0.079 | 0.23 | 0.09 | ||
7 July 2020 | Treated | 2.89 | 2.19 | 472 | 388 | 569 | N/A | 0.040 | 0.051 | 0.22 | 0.09 | ||
SS2 | 7 May 2020 | Treated | 31.2 | 3.95 | 176 | 682 | 29.2 | 1.188 | 0.057 | 0.051 | 0.16 | 0.09 | |
SS3 | 7 May 2020 | Treated | 4.36 | 55.1 | 111 | 501 | 42.4 | 0.300 | 0.153 | 0.041 | 0.67 | 0.03 |
Date | Estimated Discharged Untreated Wastewater | |
---|---|---|
Minimum (m3/day) | Maximum (m3/day) | |
30 June 2020 | 129 | 285 |
16 July 2020 | 1117 | 1561 |
31 July 2020 | 44 | 200 |
4 August 2020 | 1154 | 1391 |
6 August 2020 | 35 | 214 |
7 August 2020 | 471 | 683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.-H.; Wu, P.-C.; Ekka, S.V.; Huang, K.-F.; Lee, D.-C. Iron and Molybdenum Isotope Application for Tracing Industrial Contamination in a Highly Polluted River. Water 2024, 16, 199. https://doi.org/10.3390/w16020199
Liang Y-H, Wu P-C, Ekka SV, Huang K-F, Lee D-C. Iron and Molybdenum Isotope Application for Tracing Industrial Contamination in a Highly Polluted River. Water. 2024; 16(2):199. https://doi.org/10.3390/w16020199
Chicago/Turabian StyleLiang, Yu-Hsuan, Po-Chao Wu, Shail Vijeta Ekka, Kuo-Fang Huang, and Der-Chuen Lee. 2024. "Iron and Molybdenum Isotope Application for Tracing Industrial Contamination in a Highly Polluted River" Water 16, no. 2: 199. https://doi.org/10.3390/w16020199
APA StyleLiang, Y. -H., Wu, P. -C., Ekka, S. V., Huang, K. -F., & Lee, D. -C. (2024). Iron and Molybdenum Isotope Application for Tracing Industrial Contamination in a Highly Polluted River. Water, 16(2), 199. https://doi.org/10.3390/w16020199