Short-Term Observations of Rainfall Chemistry Composition in Bellsund (SW Spitsbergen, Svalbard)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location and Analytical Methods
2.2. Hybrid Single-Particle Langrarian Integrated Trajectory (HYSPLIT)
2.3. Factors for Results Analysis
3. Results and Discussion
3.1. Natural and Anthropogenic Origins of Pollutants
3.1.1. Volcanic Eruptions
3.1.2. Wildfires
3.1.3. Dust Transport
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pacyna, J.M.; Ottar, B.; Tomza, U.; Maenhaut, W. Long-Range Transport of Trace Elements to Ny Ålesund, Spitsbergen. Atmos. Environ. 1985, 19, 857–865. [Google Scholar] [CrossRef]
- Bazzano, A.; Cappelletti, D.; Udisti, R.; Grotti, M. Long-Range Transport of Atmospheric Lead Reaching Ny-Ålesund: Inter-Annual and Seasonal Variations of Potential Source Areas. Atmos. Environ. 2016, 139, 11–19. [Google Scholar] [CrossRef]
- Arctic Monitoring and Assessment Programme. AMAP Assessment 2002: Heavy Metals in the Arctic; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2005; ISBN 8279710183. [Google Scholar]
- Maenhaut, W.; Cornille, P.; Pacyna, J.M.; Vitols, V. Trace Element Composition and Origin of the Atmospheric Aerosol in the Norwegian Arctic. Atmos. Environ. 1989, 23, 2551–2569. [Google Scholar] [CrossRef]
- Lehmann-Konera, S.; Ruman, M.; Frankowski, M.; Małarzewski, Ł.; Raczyński, K.; Pawlak, F.; Kozioł, K.; Polkowska, Ż. Rainwater Chemistry Composition in Bellsund: Sources of Elements and Deposition Discrepancies in the Coastal Area (SW Spitsbergen, Svalbard). Chemosphere 2023, 313, 137281. [Google Scholar] [CrossRef] [PubMed]
- Law, K.S.; Stohl, A. Arctic Air Pollution: Origins and Impacts. Science 2007, 315, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Schmale, J.; Arnold, S.R.; Law, K.S.; Thorp, T.; Anenberg, S.; Simpson, W.R.; Mao, J.; Pratt, K.A. Local Arctic Air Pollution: A Neglected but Serious Problem. Earths Future 2018, 6, 1385–1412. [Google Scholar] [CrossRef]
- Kozak, K.; Kozioł, K.; Luks, B.; Chmiel, S.; Ruman, M.; Marć, M.; Namieśnik, J.; Polkowska, Ż. The Role of Atmospheric Precipitation in Introducing Contaminants to the Surface Waters of the Fuglebekken Catchment, Spitsbergen. Polar Res. 2015, 34, 24207. [Google Scholar] [CrossRef]
- Ruman, M.; Szopińska, M.; Kozak, K.; Lehmann, S.; Polkowska, Ż. The Research of the Contamination Levels Present in Samples of Precipitation and Surface Waters Collected from the Catchment Area Fuglebekken (Hornsund, Svalbard Archipelago). In Proceedings of the AIP Conference, Athens, Greece, 4–7 April 2014; Volume 297, pp. 297–300. [Google Scholar] [CrossRef]
- Seyfioglu, R.; Odabasi, M. Investigation of Air-Water Exchange of Formaldehyde Using the Water Surface Sampler: Flux Enhancement Due to Chemical Reaction. Atmos. Environ. 2006, 40, 3503–3512. [Google Scholar] [CrossRef]
- Kozak, K.; Polkowska, Z.; Ruman, M.; Kozioł, K.; Namieśnik, J. Analytical Studies on the Environmental State of the Svalbard Archipelago Provide a Critical Source of Information about Anthropogenic Global Impact. Trends Anal. Chem. 2013, 50, 107–126. [Google Scholar] [CrossRef]
- Tolvanen, A.; Eilu, P.; Juutinen, A.; Kangas, K.; Kivinen, M.; Markovaara-koivisto, M.; Naskali, A.; Salokannel, V.; Tuulentie, S.; Similä, J. Mining in the Arctic Environment—A Review from Ecological, Socioeconomic and Legal Perspectives. J. Environ. Manag. 2019, 233, 832–844. [Google Scholar] [CrossRef]
- Rudnicka-Kępa, P.; Zaborska, A. Sources, Fate and Distribution of Inorganic Contaminants in the Svalbard Area, Representative of a Typical Arctic Critical Environment—A Review. Environ. Monit. Assess. 2021, 193, 724. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, A.; Szopinska, M.; Chmiel, S.; Konczak, M.; Polkowska, Z.; Artichowicz, W.; Jankowska, K.; Nowak, A.; Łuczkiewicz, A. Heavy Metals in a High Arctic Fiord and Their Introduction with the Wastewater: A Case Study of Adventfjorden-Longyearbyen System, Svalbard. Water 2020, 12, 794. [Google Scholar] [CrossRef]
- Spolaor, A.; Moroni, B.; Luks, B.; Nawrot, A.; Roman, M.; Larose, C.; Stachnik, Ł.; Bruschi, F.; Kozioł, K.; Pawlak, F.; et al. Investigation on the Sources and Impact of Trace Elements in the Annual Snowpack and the Firn in the Hansbreen (Southwest Spitsbergen). Front. Earth Sci. 2021, 8, 536036. [Google Scholar] [CrossRef]
- Krawczyk, W.E.; Bartoszewski, S.A.; Siwek, K. Rain Water Chemistry at Calypsobyen, Svalbard. Pol. Polar Res. 2008, 29, 149–162. [Google Scholar]
- Krawczyk, W.E.; Bartoszewski, S.A. Crustal Solute Fluxes and Transient Carbon Dioxide Drawdown in the Scottbreen Basin, Svalbard in 2002. J. Hydrol. 2008, 362, 206–219. [Google Scholar] [CrossRef]
- Lehmann, S.; Gajek, G.; Chmiel, S.; Polkowska, Ż. Do Morphometric Parameters and Geological Conditions Determine Chemistry of Glacier Surface Ice? Spatial Distribution of Contaminants Present in the Surface Ice of Spitsbergen Glaciers (European Arctic). Environ. Sci. Pollut. Res. 2016, 23, 23385–23405. [Google Scholar] [CrossRef] [PubMed]
- Szumińska, D.; Szopińska, M.; Lehmann-Konera, S.; Franczak, Ł.; Kociuba, W.; Chmiel, S.; Kalinowski, P.; Polkowska, Ż. Water Chemistry of Tundra Lakes in the Periglacial Zone of the Bellsund Fiord (Svalbard) in the Summer of 2013. Sci. Total Environ. 2018, 624, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, W.E.; Skrȩt, U. Organic Compounds in Rainfall at Hornsund, SW Spitsbergen: Qualitative Results. Pol. Polar Res. 2005, 26, 65–76. [Google Scholar]
- Kozak, K.; Ruman, M.; Kosek, K.; Karasiński, G.; Stachnik, Ł.; Polkowska, Z. Impact of Volcanic Eruptions on the Occurrence of PAHs Compounds in the Aquatic Ecosystem of the Southern Part of West Spitsbergen (Hornsund Fjord, Svalbard). Water 2017, 9, 42. [Google Scholar] [CrossRef]
- Koffman, B.G.; Yoder, M.F.; Methven, T.; Hanschka, L.; Sears, H.B.; Saylor, P.L.; Wallace, K.L. Glacial Dust Surpasses Both Volcanic Ash and Desert Dust in Its Iron Fertilization Potential. Glob. Biogeochem. Cycles 2021, 35, e2020GB006821. [Google Scholar] [CrossRef]
- Ionov, D.A.; Bénard, A.; Plechov, P.Y.; Shcherbakov, V.D. Along-Arc Variations in Lithospheric Mantle Compositions in Kamchatka, Russia: First Trace Element Data on Mantle Xenoliths from the Klyuchevskoy Group Volcanoes. J. Volcanol. Geotherm. Res. 2013, 263, 122–131. [Google Scholar] [CrossRef]
- Golobokova, L.; Khodzher, T.; Khuriganova, O.; Marinayte, I.; Onishchuk, N.; Rusanova, P.; Potemkin, V. Variability of Chemical Properties of the Atmospheric Aerosol above Lake Baikal during Large Wildfires in Siberia. Atmosphere 2020, 11, 1230. [Google Scholar] [CrossRef]
- Potter, K.M. Large-Scale Patterns of Forest Fire Occurrence in the Conterminous United States, Alaska, and Hawaii, 2016. In Forest Health Monitoring: National Status, Trends, and Analysis 2017; Gen. Tech. Rep. SRS-233; Potter, K.M., Conkling, B.L., Eds.; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2018; pp. 45–64. [Google Scholar]
- Zhang, Y.; Pelletier, R.; Noernberg, T.; Donner, M.W.; Grant-Weaver, I.; Martin, J.W.; Shotyk, W. Impact of the 2016 Fort McMurray Wildfires on Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons and Trace Elements to Surrounding Ombrotrophic Bogs. Environ. Int. 2022, 158, 106910. [Google Scholar] [CrossRef] [PubMed]
- Butwin, M.K.; Von Löwis, S.; Pfe, M.A.; Thorsteinsson, T. The Effects of Volcanic Eruptions on the Frequency of Particulate Matter Suspension Events in Iceland. J. Aerosol Sci. 2019, 128, 99–113. [Google Scholar] [CrossRef]
- Moroni, B.; Cappelletti, D.; Crocchianti, S.; Becagli, S.; Caiazzo, L.; Traversi, R.; Udisti, R.; Mazzola, M.; Markowicz, K.; Ritter, C.; et al. Morphochemical Characteristics and Mixing State of Long Range Transported Wildfire Particles at Ny-Ålesund (Svalbard Islands). Atmos. Environ. 2017, 156, 135–145. [Google Scholar] [CrossRef]
- Crocchianti, S.; Moroni, B.; Dagsson, P.; Becagli, S.; Severi, M.; Traversi, R.; Cappelletti, D. Potential Source Contribution Function Analysis of High Latitude Dust Sources over the Arctic: Preliminary Results and Prospects. Atmosphere 2021, 12, 347. [Google Scholar] [CrossRef]
- Rzętkowska, A. Vegetation of Calypsostranda in Wedel Jarlsberg Land, Spitsbergen. Pol. Polar Res. 1987, 8, 251–260. [Google Scholar]
- Zagórski, P. Shoreline Dynamics of Calypsostranda (NW Wedel Jarlsberg Land, Svalbard) during the Last Century. Pol. Polar Res. 2011, 32, 67–99. [Google Scholar] [CrossRef]
- Repelewska-Pękalowa, J.; Pękala, K. Spatial and Temporal Variation in Active Layer Thickness, Calypsostranda, Spitsbergen. In Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; Philips, M., Springman, S., Arenson, L., Eds.; August Aimé Balkema: Rotterdam, The Netherlands, 2003; pp. 941–945, ISBN 9058095827. [Google Scholar]
- Mędrek, K.; Gluza, A.; Siwek, K.; Zagórski, P. The Meteorological Conditions on the Calypsobyen in Summer 2014 on the Bacground of Multiyear 1986–2011. Probl. Klimatol. Polarn. 2014, 2, 37–50. [Google Scholar]
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, K.; Levelt, P.F. Sulfur Dioxide Emissions from Peruvian Copper Smelters Detected by the Ozone Monitoring Instrument. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Moroni, B.; Cappelletti, D.; Ferrero, L.; Crocchianti, S.; Busetto, M.; Mazzola, M.; Becagli, S.; Traversi, R.; Udisti, R. Local vs. Long-Range Sources of Aerosol Particles upon Ny-Ålesund (Svalbard Islands): Mineral Chemistry and Geochemical Records. Rend. Lincei 2016, 27, 115–127. [Google Scholar] [CrossRef]
- Symonds, R.B.; Reed, M.H.; Rose, W.I. Origin, Speciation, and Fluxes of Trace-Element Gases at Augustine Volcano, Alaska: Insights into Magma Degassing and Fumarolic Processes. Geochim. Cosmochim. Acta 1992, 56, 633–657. [Google Scholar] [CrossRef]
- Candelone, J.P.; Bolshov, M.A.; Rudniev, S.N.; Hong, S.; Boutron, C.F. Bismuth in Recent Snow from Central Greenland: Preliminary Results. Atmos. Environ. 1995, 29, 1843–1848. [Google Scholar] [CrossRef]
- Ferrari, C.P.; Hong, S.; Van De Velde, K.; Boutron, C.F.; Rudniev, S.N.; Bolshov, M.; Chisholm, W.; Rosman, K.J.R. Natural and Anthropogenic Bismuth in Central Greenland. Atmos. Environ. 2000, 34, 941–948. [Google Scholar] [CrossRef]
- Bryant, J.A.; Yogodzinski, G.M.; Churikova, T.G. Melt-Mantle Interactions beneath the Kamchatka Arc: Evidence from Ultramafic Xenoliths from Shiveluch Volcano. Geochem. Geophys. Geosyst. 2007, 8, 1–24. [Google Scholar] [CrossRef]
- Moroni, B.; Ritter, C.; Crocchianti, S.; Markowicz, K.; Mazzola, M.; Becagli, S.; Traversi, R.; Krejci, R.; Tunved, P.; Cappelletti, D. Individual Particle Characteristics, Optical Properties and Evolution of an Extreme Long-Range Transported Biomass Burning Event in the European Arctic (Ny-Ålesund, Svalbard Islands). J. Geophys. Res. Atmos. 2020, 125, e2019JD031535. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I.; Gorchakov, G.I. The Link between Smoke Blanketing of European Russia in Summer 2016, Siberian Wildfires and Anomalies of Large-Scale Atmospheric Circulation. Dokl. Earth Sci. 2017, 472, 190–195. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I.; Gorchakov, G.I.; Dzhola, A.V. Smoke Haze over the European Part of Russia in the Summer of 2016: A Link to Wildfires in Siberia and Atmospheric Circulation Anomalies. Russ. Meteorol. Hydrol. 2017, 42, 518–528. [Google Scholar] [CrossRef]
- Shcherbov, B.L.; Zhurkova, I.S. Forest Fires as an Important Factor of Scattering and Concentration of Chemical Elements in Siberia. Geol. Miner. Resour. Sib. 2014, S3, 37–40. [Google Scholar]
- Isley, C.F.; Taylor, M.P. Atmospheric Remobilization of Natural and Anthropogenic Contaminants during Wild Fi Res *. Environ. Pollut. 2020, 267, 115400. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, J.S.; Braun, R.A.; Bradley, T.; Dadashazar, H.; MacDonald, A.B.; Aldhaif, A.A.; Aghdam, M.A.; Mardi, A.H.; Xian, P.; Sorooshian, A. Analysis of Aerosol Composition Data for Western United States Wildfires between 2005 and 2015: Dust Emissions, Chloride Depletion, and Most Enhanced Aerosol Constituents. J. Geophys. Res. Atmos. 2017, 122, 8951–8966. [Google Scholar] [CrossRef] [PubMed]
- Shevtsova, I.; Heim, B.; Kruse, S.; Schröder, J.; Troeva, E.I. Strong Shrub Expansion in Tundra-Taiga, Tree Infilling in Taiga and Stable Tundra in Central Chukotka (North-Eastern Siberia) between 2000 and 2017 OPEN ACCESS Strong Shrub Expansion in Tundra-Taiga, Tree Infilling in Taiga and Stable Tundra in Centra. Environ. Res. Lett. 2020, 15, 085006. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I.; Likhosherstova, A.A. Exploring Large-Scale Black—Carbon Air Pollution over Northern Eurasia in Summer 2016 Using MERRA-2 Reanalysis Data. Atmos. Res. 2020, 235, 104763. [Google Scholar] [CrossRef]
- Cohen, D.D.; Atanacio, A.J.; Stelcer, E.; Garton, D. Sydney Particle Characterisation Study PM2. 5 Source Apportionment in the Sydney Region between 2000 and 2014; Australian Nuclear Science and Technology Organisation: Lucas Heights, Australia, 2016.
- Conca, E.; Abollino, O.; Giacomino, A.; Buoso, S.; Traversi, R.; Becagli, S.; Grotti, M.; Malandrino, M. Source Identification and Temporal Evolution of Trace Elements in PM10 Collected near to Ny-Ålesund (Norwegian Arctic). Atmos. Environ. 2019, 203, 153–165. [Google Scholar] [CrossRef]
- Kavan, J.; Kamil, L.; Nawrot, A. High Latitude Dust Transport Altitude Pattern Revealed from Deposition on Snow, Svalbard. Atmopshere 2020, 11, 1318. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Cao, J.; Ho, K.; Zhang, R.; Bie, Z.; Chang, H.; Liu, S. Chemical Profiles of Urban Fugitive Dust over Xi’an in the South Margin of the Loess Plateau, China. Atmos. Pollut. Res. 2014, 5, 421–430. [Google Scholar] [CrossRef]
- Moroni, B.; Arnalds, O.; Dagsson-Waldhauserová, P.; Crocchianti, S.; Vivani, R.; Cappelletti, D. Mineralogical and Chemical Records of Icelandic Dust Sources upon Ny-Ålesund (Svalbard Islands). Front. Earth Sci. 2018, 6, 187. [Google Scholar] [CrossRef]
- GVP Global Volcanism Program. Volcanoes of the World, v.4.10.5 (27 January 2022); Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2022. [Google Scholar]
- VONA/KVERT Weekly Release. 12 July 2016. Available online: http://www.kscnet.ru/ivs/kvert/van/?n=2016-07-25 (accessed on 15 March 2023).
- Global Volcanism Program 2016. Report on Cleveland (United States); Sennert, S.K. (Ed.) Weekly Volcanic Activity Report, 1 June–7 June 2016; Smithsonian Institution and US Geological Survey; Available online: https://volcano.si.edu/showreport.cfm?wvar=GVP.WVAR20160601-311240 (accessed on 15 March 2023).
- Global Volcanism Program, 2016. Report on Pavlof (United States); Sennert, S.K. (Ed.) Weekly Volcanic Activity Report, 27 July–2 August 2016; Smithsonian Institution and US Geological Survey; Available online: https://volcano.si.edu/showreport.cfm?wvar=GVP.WVAR20160727-312030 (accessed on 15 March 2023).
- Larsen, J.F.; Waythomas, C.F.; Mulliken, K.M.; Izbekov, P.; Cameron, C.E. Major-Element Oxide, Trace Element, and Glass Compositional Anlyses from Holocene to Historical Eruptions from Pavlof Volcano. State of Alaska. 2021. Available online: https://dggs.alaska.gov/webpubs/dggs/pir/text/pir2021_001.pdf (accessed on 15 March 2023).
- Ershov, D.V.; Sochilova, E.N. Assessment of direct pyrogenic carbon emissions in Russian forests for 2020 using remote monitoring data. Вoпрoсы Леснoй Науки 2021, 4, 1–7. (In Russian) [Google Scholar] [CrossRef]
Parameter | Measurement Range | LOD * | LOQ ** | Measurement Instrumentation |
---|---|---|---|---|
DOC [mg/L] | 0.030–10.0 | 0.030 | 0.100 | TOC analyzer (TOC-VCSH/CSN, Shimadzu, Kyoto, Japan), Potassium Hydrogen Phthalate standard (28419-35 Potassium Hydrogen Phthalate, CAS 877-24-7, for TOC, Nacalai Tesque Inc, Kyoto, Japan) |
Cl−, NO3−, SO42 [mg/L] | 0.080–200 | 0.026 | 0.080 | DIONEX 3000 chromatograph (DIONEX, Sunnyvale, CA, USA) Column: Ion Pac®AS22 (2 × 250 mm); Suppressor: ASRS-300, 2 mm; Mobile phase: 4.5 mM CO32−, 1.4 mM HCO3−; Flow rate: 0.38 mL/min; Detection: conductivity. |
Major elements [mg/L] | Inductively Coupled Plasma Mass Spectrometry (ICP-MS 2030 Shimadzu, Japan, Collision Cell Technology, plasma gas flow Ar: 8 L/min, collision cell gas flow He: 6 mL/min). Calibration: 1.11355-IV multi-element standard was used from Supelco (Merck, Sigma-Aldrich, Saint Louis, MO, USA), single standards TraceCERT® from Supelco: 01969- As, 73495- Sb, 98838- Se, 39891- Mo, and 18399-V (Merck, Sigma-Aldrich, USA). Internal standards TraceCERT® from Supelco: 92279-Sc, 04736-Rh, 44881-Tb, and 05419-Ge standard solutions in 1% HNO3 (Merck, Sigma-Aldrich, USA). Quality control: the Certified Reference Material ERM-CA713 (sample 125) trace elements in wastewater (IRMM—Institute for Reference Materials and Measurements). | |||
Ca | 0.016–100 | 0.005 | 0.016 | |
Fe | 0.003–10 | 0.001 | 0.003 | |
K | 0.026–1000 | 0.008 | 0.026 | |
Mg | 0.001–1000 | 0.0004 | 0.001 | |
Trace elements [µg/L] | ||||
Ag, Sb, Li, V, Pb, As | 0.003–1000 | 0.001 | 0.003 | |
Ba, Cr, Hg, Mo, Sr | 0.006–1000 | 0.002 | 0.006 | |
Cd | 0.009–1000 | 0.003 | 0.009 | |
Co | 0.015–1000 | 0.005 | 0.015 | |
Mn | 0.030–1000 | 0.010 | 0.030 | |
Bi | 0.045–1000 | 0.015 | 0.045 | |
Ni | 0.048–1000 | 0.016 | 0.048 | |
Zn | 0.069–1000 | 0.023 | 0.069 | |
Al | 0.097–1000 | 0.032 | 0.097 | |
Cu | 0.124–1000 | 0.041 | 0.124 | |
Se | 0.154–1000 | 0.051 | 0.154 |
| ||
| ||
| ||
| ||
| ||
| ||
| ||
|
|
|
On 28–30 August, it could be noted that the same pressure systems had an effect on the air over the study area. All three streams shared the characteristic that they originated from northern Russia and west of the Central Siberian Plateau. Then, they continued their journey through the Bering Strait, along the northern coast of Alaska, and through the Arctic Ocean to further be transported to the northern coast of the Queen Elisabeth Islands. Finally, all three streams jointly changed their course from the northern coast of Greenland toward Svalbard. | ||
|
Parameters/ Analytes | Calypsostranda | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
August | |||||||||||
7 | 8 | 14 | 15 | 16 | 17 | 25 | 28 | 29 | 30 | 31 | |
P [mm] | 4.40 | 0.75 | 5.10 | 0.85 | 2.30 | 1.20 | 1.45 | 1.45 | 6.30 | 0.60 | 3.90 |
T [°C] | 6.03 | 6.08 | 5.76 | 5.53 | 7.00 | 6.94 | 4.12 | 4.16 | 3.41 | 3.22 | 2.79 |
pH [−] | 5.68 | 5.51 | 6.73 | 7.08 | 5.95 | 6.08 | 5.61 | 6.26 | 7.04 | 7.06 | 6.19 |
SEC [µS/cm] | 21 | 23 | 28 | 33 | 12 | 12 | 31 | 94 | 80 | 46 | 18 |
Organic compounds [mg/L] | |||||||||||
DOC | 0.824 | 0.611 | 0.771 | 1.90 | 1.13 | 1.47 | 0.699 | 1.13 | 0.354 | 1.32 | 0.841 |
Anions [meq/L] | |||||||||||
Cl− | 0.157 | 0.099 | 0.160 | 0.209 | 0.067 | 0.056 | 0.206 | 0.693 | 0.573 | 0.269 | 0.113 |
NO3− | <LOD | <LOD | <LOD | 0.015 | <LOD | 0.015 | 0.019 | <LOD | <LOD | <LOD | <LOD |
SO42− | 0.042 | 0.022 | 0.031 | 0.045 | 0.026 | 0.018 | 0.037 | 0.085 | 0.072 | 0.048 | 0.030 |
Elements [µg/L] | |||||||||||
Ca | 53.5 | 36.7 | 11.0 | 49.5 | 21.3 | 31.0 | 21.5 | 67.4 | 31.8 | 9.21 | 8.01 |
K | 2180 | 185 | 197 | 269 | 203 | 219 | 298 | 841 | 445 | 284 | 156 |
Mg | 293 | 200 | 326 | 372 | 91.0 | 69.00 | 361 | 1540 | 1140 | 481 | 195 |
Na | 2980 | 1490 | 2640 | 3480 | 699 | 610 | 3400 | 13,100 | 9060 | 3830 | 1520 |
Ag | 0.174 | 0.159 | 0.184 | 0.221 | 0.172 | 0.129 | 0.086 | 0.065 | 0.056 | 0.235 | 0.109 |
Al | 5.38 | 2.88 | 2.61 | 4.40 | 2.33 | 2.66 | 3.56 | 3.38 | 4.29 | 4.80 | 2.58 |
As | 0.276 | 0.228 | 0.216 | 0.229 | 0.176 | 0.171 | 0.203 | 0.212 | 0.165 | 0.160 | 0.154 |
Ba | 4.08 | <LOD | <LOD | 0.262 | <LOD | 4.30 | <LOD | <LOD | <LOD | 14.1 | 0.872 |
Bi | 23.5 | 23.0 | 22.8 | 22.7 | 22.2 | 21.8 | 21.2 | 21.4 | 20.9 | 20.8 | 20.6 |
Li | 1.85 | 1.78 | 1.75 | 1.75 | 1.69 | 1.72 | 1.73 | 1.82 | 1.74 | 1.66 | 1.63 |
Cd | 0.278 | 0.036 | 0.022 | 0.031 | 0.022 | 0.051 | 0.012 | 0.077 | 0.002 | 0.677 | 0.302 |
Co | 1.81 | 0.089 | 0.026 | 0.049 | 0.038 | 0.032 | 0.043 | 0.053 | 0.022 | 0.042 | 0.006 |
Cr | 0.403 | 0.059 | 0.191 | 0.190 | 0.035 | 0.031 | 0.075 | 0.009 | 0.028 | 0.064 | 0.017 |
Cu | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Fe | 3.07 | 2.20 | 2.25 | 3.23 | 2.68 | 1.39 | 2.42 | 2.33 | 3.61 | 2.79 | 10.0 |
Hg | 0.044 | 0.007 | <LOD | 0.009 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mn | 3.32 | 1.43 | 0.764 | 1.16 | 0.820 | 1.99 | 1.98 | 2.28 | 1.36 | 1.56 | 0.917 |
Mo | 0.80 | 0.36 | 0.212 | 0.221 | 0.215 | 0.177 | 0.151 | 0.161 | 0.198 | 0.134 | 0.142 |
Ni | 66.4 | 3.07 | 1.36 | 1.24 | 1.18 | 0.932 | 1.52 | 1.35 | 2.39 | 0.986 | 0.837 |
Pb | 3.74 | 0.901 | 1.08 | 0.503 | 0.398 | 0.211 | 0.304 | 0.474 | 0.330 | 3.36 | 1.36 |
Sb | 0.190 | 0.079 | 0.077 | 0.057 | 0.064 | 0.064 | 0.073 | 0.040 | 0.039 | 0.041 | 0.038 |
Se | 0.616 | 0.830 | 0.553 | 0.531 | 0.510 | 0.443 | 0.510 | 0.419 | 0.412 | 0.598 | 0.500 |
Sr | 2.22 | 2.69 | 0.849 | 2.58 | <LOD | <LOD | 1.03 | 10.50 | 6.53 | 1.50 | <LOD |
V | 0.344 | 0.298 | 0.285 | 0.302 | 0.264 | 0.241 | 0.200 | 0.237 | 0.203 | 0.165 | 0.164 |
Zn | 184 | 16.0 | 6.06 | 14.9 | 13.2 | 62.3 | 6.12 | 13.7 | 1.41 | 81.8 | 19.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehmann-Konera, S.; Ruman, M.; Frankowski, M.; Małarzewski, Ł.; Raczyński, K.; Pawlak, F.; Jóźwik, J.; Potapowicz, J.; Polkowska, Ż. Short-Term Observations of Rainfall Chemistry Composition in Bellsund (SW Spitsbergen, Svalbard). Water 2024, 16, 299. https://doi.org/10.3390/w16020299
Lehmann-Konera S, Ruman M, Frankowski M, Małarzewski Ł, Raczyński K, Pawlak F, Jóźwik J, Potapowicz J, Polkowska Ż. Short-Term Observations of Rainfall Chemistry Composition in Bellsund (SW Spitsbergen, Svalbard). Water. 2024; 16(2):299. https://doi.org/10.3390/w16020299
Chicago/Turabian StyleLehmann-Konera, Sara, Marek Ruman, Marcin Frankowski, Łukasz Małarzewski, Krzysztof Raczyński, Filip Pawlak, Joanna Jóźwik, Joanna Potapowicz, and Żaneta Polkowska. 2024. "Short-Term Observations of Rainfall Chemistry Composition in Bellsund (SW Spitsbergen, Svalbard)" Water 16, no. 2: 299. https://doi.org/10.3390/w16020299
APA StyleLehmann-Konera, S., Ruman, M., Frankowski, M., Małarzewski, Ł., Raczyński, K., Pawlak, F., Jóźwik, J., Potapowicz, J., & Polkowska, Ż. (2024). Short-Term Observations of Rainfall Chemistry Composition in Bellsund (SW Spitsbergen, Svalbard). Water, 16(2), 299. https://doi.org/10.3390/w16020299