Traffic Intensity as a Factor Influencing Microplastic and Tire Wear Particle Pollution in Snow Accumulated on Urban Roads
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Snow Sampling
2.3. Research Quality Assurance
2.4. Polymer Isolation and Analysis
2.5. Data Analysis
3. Results
3.1. MP and TWP Concentrations
3.2. Particle Size Distribution
3.3. Particle Shape and Color
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verschoor, A.J.; de Valk, E. Potential Measures against Microplastic Emissions to Water; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2018; pp. 11–30. [CrossRef]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Sköld, Y. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef] [PubMed]
- Pohrt, R. Tire wear particle hot spots—Review of influencing factors. Facta Univ. Ser. Mech. Eng. 2019, 17, 17–27. [Google Scholar] [CrossRef]
- ISO 472:2013. Available online: https://www.iso.org/standard/44102.html (accessed on 10 September 2024).
- Verschoor, A.; de Poorter, L.; Droge, R.; Kuenen, J.; de Valk, E. Emission of Microplastics and Potential Mitigation Measures; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016; pp. 11–20. Available online: http://hdl.handle.net/10029/617930 (accessed on 17 September 2024).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on the Approval and Market Surveillance of Motor Vehicles and Their Trailers, and of Systems, Components, and Separate Technical Units Intended for Such Vehicles (Euro 7). COM/2021/204 Final. 2021. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12861-Euro-7-emission-standards (accessed on 2 September 2024).
- Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso Sea Surface. Science 1972, 178, 1240–1241. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, X.; Su, Y.; Wang, H.; Yu, R.; Zhou, S.; Xu, E.G.; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Sci. Total Environ. 2021, 795, 148902. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Trybułowski, Ł.; Skorbiłowicz, E. Spatial Distribution and Pollution Level of Heavy Metals in Street Dust of the City of Suwałki (Poland). Int. J. Environ. Res. Public Health 2023, 20, 4687. [Google Scholar] [CrossRef]
- Vogelsang, C.; Lusher, A.; Dadkhah, M.E.; Sundvor, I.; Umar, M.; Ranneklev, S.B.; Eidsvoll, D.; Meland, S. Microplastics in road dust–characteristics, pathways and measures. NIVA-Rapport, 2019; 42–51. Available online: https://hdl.handle.net/11250/2670146 (accessed on 17 September 2024).
- Goßmann, I.; Herzke, D.; Held, A.; Schulz, J.; Nikiforov, V.; Georgi, C.; Evangeliou, N.; Eckhardt, S.; Gerdts, G.; Wurl, O.; et al. Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air. Nat. Commun. 2023, 14, 3707. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Lu, H.C.; Drapper, D.; Hornbuckle, A.; Leusch, F.D.L. Microplastics and Tire Wear Particles in Urban Stormwater: Abundance, Characteristics, and Potential Mitigation Strategies. Environ. Sci. Technol. 2023, 57, 12829–12837. [Google Scholar] [CrossRef]
- Liu, F.; Vianello, A.; Vollertsen, J. Retention of microplastics in sediments of urban and highway stormwater retention ponds. Environ. Pollut. 2019, 255, 113335. [Google Scholar] [CrossRef] [PubMed]
- Olesen, K.B.; Stephansen, D.A.; van Alst, N.; Vollertsen, J. Microplastics in a stormwater pond. Water 2019, 11, 1466. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tyre and road wear particles—A calculation of generation, transport and release to water and soil with special regard to German roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef] [PubMed]
- Capolupo, M.; Gunaalan, K.; Booth, A.M.; Sørensen, L.; Valbonesi, P.; Fabbri, E. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. Environ. Pollut. 2021, 283, 117081. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Wang, J.; Li, J.; Jia, H. In Vitro Assessment Reveals the Effects of Environmentally Persistent Free Radicals on the Toxicity of Photoaged Tire Wear Particles. Environ. Sci. Technol. 2022, 56, 1664–1674. [Google Scholar] [CrossRef]
- Sathicq, M.B.; Sabatino, R.; Di Cesare, A.; Eckert, E.M.; Fontaneto, D.; Rogora, M.; Corno, G. PET particles raise microbiological concerns for human health while tyre wear microplastic particles potentially affect ecosystem services in waters. J. Hazard. Mater. 2022, 429, 128397. [Google Scholar] [CrossRef]
- Shin, H.; Sukumaran, V.; Yeo, I.C.; Shim, K.Y.; Lee, S.; Choi, H.K.; Ha, S.Y.; Kim, M.; Jung, J.H.; Lee, J.S.; et al. Phenotypic toxicity, oxidative response, and transcriptomic deregulation of the rotifer Brachionus plicatilis exposed to a toxic cocktail of tire-wear particle leachate. J. Hazard. Mater. 2022, 438, 129417. [Google Scholar] [CrossRef]
- Hann, S.; Sherrington, C.; Jamieson, O.; Hickman, M.; Kershaw, P.; Bapasola, A. Investigating Options for Reducing Releases in the Aquatic Environment of Microplastics Emitted by (But Not Intentionally Added in) Products Final Report for DG Environment of the European Commission, 335. 2018. Available online: https://www.bmbf-plastik.de/sites/default/files/2018-04/microplastics_final_report_v5_full.pdf (accessed on 10 September 2024).
- Unice, K.M.; Weeber, M.P.; Abramson, M.M.; Reid, R.C.D.; Van Gils, J.A.G.; Markus, A.A.; Vethaak, A.D.; Panko, J.M. Characterizing export of land-based microplastics to the estuary-Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Sci. Total Environ. 2019, 646, 1639–1649. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 2020, 698, 134254. [Google Scholar] [CrossRef]
- Deoniziak, K.; Cichowska, A.; Niedźwiecki, S.; Pol, W. Thrushes (Aves: Passeriformes) as indicators of microplastic pollution in terrestrial environments. Sci. Total Environ. 2022, 853, 158621. [Google Scholar] [CrossRef]
- Arif, Y.; Mir, A.R.; Zieliński, P.; Hayat, S.; Bajguz, A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. J. Environ. Manag. 2024, 356, 120618. [Google Scholar] [CrossRef] [PubMed]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Magnusson, K.; Viklander, M.; Blecken, G.T. Removal of rubber, bitumen and other microplastic particles from stormwater by a gross pollutant trap-bioretention treatment train. Water Res. 2021, 202, 117457. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Furén, R.; Österlund, H.; Winston, R.; Tirpak, R.A.; Nordqvist, K.; Smith, J.; Dorsey, J.; Viklander, M.; Blecken, G.T. Abundance, distribution, and composition of microplastics in the filter media of nine aged stormwater bioretention systems. Chemosphere 2023, 320, 138103. [Google Scholar] [CrossRef]
- Bondelind, M.; Sokolova, E.; Nguyen, A.; Karlsson, D.; Karlsson, A.; Björklund, K. Hydrodynamic modelling of traffic-related microplastics discharged with stormwater into the Göta River in Sweden. Environ. Sci. Pollut. Res. 2020, 27, 24218–24230. [Google Scholar] [CrossRef]
- Treilles, R.; Gasperi, J.; Gallard, A.; Saad, M.; Dris, R.; Partibane, C.; Breton, J.; Tassin, B. Microplastics and microfibers in urban runoff from a suburban catchment of Greater Paris. Environ. Pollut. 2021, 287, 117352. [Google Scholar] [CrossRef]
- Worek, J.; Badura, X.; Białas, A.; Chwiej, J.; Kawoń, K.; Styszko, K. Pollution from Transport: Detection of Tyre Particles in Environmental Samples. Energies 2022, 15, 2816. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. Sci. Total Environ. 2023, 858, 159781. [Google Scholar] [CrossRef]
- Chernykh, D.V.; Biryukov, R.Y.; Kuryatnikova, N.A.; Malygina, N.S. Microplastics in the Snow Cover of Urban Landscapes: A Case Study of Barnaul. Geogr. Nat. Resour. 2022, 43, S44–S49. [Google Scholar] [CrossRef]
- Parolini, M.; Antonioli, D.; Borgogno, F.; Gibellino, M.C.; Fresta, J.; Albonico, C.; De Felice, B.; Canuto, S.; Concedi, D.; Romani, A.; et al. Microplastic contamination in snow from western Italian alps. Int. J. Environ. Res. Public Health 2021, 18, 768. [Google Scholar] [CrossRef]
- Goßmann, I.; Süßmuth, R.; Scholz-Böttcher, B.M. Plastic in the air?!-Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air. Sci. Total Environ. 2022, 832, 155008. [Google Scholar] [CrossRef] [PubMed]
- Rathnaweera, S.S.; Vik, E.A.; Manamperuma, L.D.; Åstebøl, S.O.; Vollertsen, J.; Heier, L.S.; Kronvall, K.W. Study of traffic-related pollution and its treatment with a particular focus on microplastics in tunnel wash and road runoff water. Water Sci. Technol. 2023, 88, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Rødland, E.S.; Lind, O.C.; Reid, M.J.; Heier, L.S.; Okoffo, E.D.; Rauert, C.; Thomas, K.V.; Meland, S. Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications. Sci. Total Environ. 2022, 824, 153785. [Google Scholar] [CrossRef]
- Górniak, A. The Climate of the Podlaskie Voivodeship in the Time of Global Warming; University of Bialystok Press: Białystok, Poland, 2021; pp. 1–222. Available online: http://hdl.handle.net/11320/12295 (accessed on 17 September 2024). (In Polish)
- Report on the State of the Suwałki City. Available online: https://bip.um.suwalki.pl/programy_strategie_raporty_miasta/ (accessed on 2 September 2024).
- Mani, T.; Frehland, S.; Kalberer, A.; Burkhardt-Holm, P. Using castor oil to separate microplastics from four different environmental matrices. Anal. Methods 2019, 11, 1788–1794. [Google Scholar] [CrossRef]
- Graca, B.; Szewc, K.; Zakrzewska, D.; Dołęga, A.; Szczerbowska-Boruchowska, M. Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea—A preliminary study. Environ. Sci. Pollut. Res. 2017, 24, 7650–7661. [Google Scholar] [CrossRef] [PubMed]
- Barrows, A.P.W.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef]
- Pol, W.; Żmijewska, A.; Stasińska, E.; Zieliński, P. Spatial–temporal distribution of microplastics in lowland rivers flowing through two cities (NE Poland). Water Air Soil Pollut. 2022, 233, 140. [Google Scholar] [CrossRef]
- Pol, W.; Mierzyńska, K.; Włodarczyk, T.; Hauschild, T.; Zieliński, P. No trophy for the trophy?-How lake trophy impacts bacterial assemblages of biofilm on microplastic. Ecohydrol. Hydrobiol. 2023, 23, 602–613. [Google Scholar] [CrossRef]
- Ruggero, F.; Gori, R.; Lubello, C. Methodologies for Microplastics Recovery and Identification in Heterogeneous Solid Matrices: A Review. J. Polym. Environ. 2020, 28, 739–748. [Google Scholar] [CrossRef]
- Vandermeersch, G.; Van Cauwenberghe, L.; Janssen, C.R.; Marques, A.; Granby, K.; Fait, G.; Kotterman, M.J.J.; Diogène, J.; Bekaert, K.; Robbens, J.; et al. A critical view on microplastic quantification in aquatic organisms. Environ. Res. 2015, 143, 46–55. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef]
- Zbyszewski, M.; Corcoran, P.L. Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut. 2011, 220, 365–372. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Wilkinson, T.; Järlskog, I.; de Lima, J.A.; Gustafsson, M.; Mattsson, K.; Andersson Sköld, Y.; Hassellöv, M. Shades of grey—Tire characteristics and road surface influence tire and road wear particle (TRWP) abundance and physicochemical properties. Front. Environ. Sci. 2023, 11, 1258922. [Google Scholar] [CrossRef]
- Vijayan, A.; Österlund, H.; Magnusson, K.; Marsalek, J.; Viklander, M. Microplastics (MPs) in urban roadside snowbanks: Quantities, size fractions and dynamics of release. Sci. Total Environ. 2022, 851, 158306. [Google Scholar] [CrossRef]
- Halsband, C.; Sørensen, L.; Khan, F.R.; Herzke, D.; Wagner, S. Environmental impacts and risks of car tire and styrene-butadiene rubber: Microplastic pollution and contaminant transport. Front. Environ. Sci. 2024, 11, 1355263. [Google Scholar] [CrossRef]
- Son, C.E.; Choi, S.S. Preparation and Characterization of Model Tire-Road Wear Particles. Polymers 2022, 14, 1512. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Water Planning Division. Results of the Nationwide Urban Runoff Program; United States Environmental Protection Agency: Washington, DC, USA, 1982.
- Amato, F.; Alastuey, A.; De La Rosa, J.; Sánchez De La Campa, A.M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef]
- Polukarova, M.; Markiewicz, A.; Björklund, K.; Strömvall, A.M.; Galfi, H.; Andersson Sköld, Y.; Gustafsson, M.; Järlskog, I.; Aronsson, M. Organic pollutants, nano- and microparticles in street sweeping road dust and washwater. Environ. Int. 2020, 135, 105337. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
Number | Street Name | Traffic Intensity | Latitude | Longitude |
---|---|---|---|---|
L1 | Gen. W. Andersa | low | 54°07′25″ N | 22°56′19″ E |
L2 | Jana Pawła II | low | 54°06′43″ N | 22°56′16″ E |
L3 | Świerkowa | low | 54°06′35″ N | 22°56′40″ E |
L4 | Szpitalna | low | 54°06′44″ N | 22°55′33″ E |
L5 | Gałaja | low | 54°06′03″ N | 22°55′16″ E |
L6 | Wesoła | low | 54°05′49″ N | 22°55′51″ E |
L7 | Powstańców Wielkopolskich | low | 54°05′19″ N | 22°55′05″ E |
L8 | Klasztorna | low | 54°05′37″ N | 22°56′52″ E |
L9 | Łąkowa | low | 54°05′31″ N | 22°56′20″ E |
L10 | Bursztynowa | low | 54°03′07″ N | 22°56′06″ E |
L11 | Kawaleryjska-Kosynierów | low | 54°05′16″ N | 22°55′16″ E |
L12 | Sportowa | low | 54°05′20″ N | 22°55′52″ E |
L13 | Innowacyjna | low | 54°05′02″ N | 22°56′19″ E |
L14 | Wł. Jagiełły | low | 54°05′57″ N | 22°54′01″ E |
L15 | Gdańska | low | 54°05′05″ N | 22°55′33″ E |
L16 | ks. Zawadzkiego | low | 54°05′59″ N | 22°55′46″ E |
L17 | Klonowa | low | 54°06′38″ N | 22°56′28″ E |
L18 | Ciesielska | low | 54°05′49″ N | 22°56′04″ E |
M1 | W. Witosa | medium | 54°07′06″ N | 22°55′54″ E |
M2 | Gen. K. Pułaskiego | medium | 54°07′06″ N | 22°56′16″ E |
M3 | F. Chopina | medium | 54°07′22″ N | 22°56′45″ E |
M4 | Nowomiejska | medium | 54°06′58″ N | 22°56′32″ E |
M5 | Kolejowa | medium | 54°06′27″ N | 22°56′19″ E |
M6 | T. Noniewicza | medium | 54°06′28″ N | 22°55′53″ E |
M7 | Gen. W. Sikorskiego | medium | 54°06′23″ N | 22°55′22″ E |
M8 | 23.Października | medium | 54°06′14″ N | 22°53′40″ E |
M9 | Sejneńska | medium | 54°06′01″ N | 22°56′47″ E |
M10 | Gen. J. Dwornickiego | medium | 54°06′23″ N | 22°55′47″ E |
M11 | T. Noniewicza | medium | 54°05′58″ N | 22°55′56″ E |
M12 | 1. Maja | medium | 54°06′01″ N | 22°56′10″ E |
M13 | Bakałarzewska | medium | 54°05′51″ N | 22°54′43″ E |
M14 | Bakałarzewska | medium | 54°05′40″ N | 22°53′39″ E |
M15 | 24. Sierpnia | medium | 54°05′38″ N | 22°55′11″ E |
M16 | L. Waryńskiego | medium | 54°05′57″ N | 22°56′16″ E |
M17 | Raczkowska | medium | 54°05′07″ N | 22°55′24″ E |
M18 | E. Plater | medium | 54°06′14″ N | 22°55′29″ E |
M19 | S. Staszica | medium | 54°06′22″ N | 22°55′01″ E |
M20 | Sejneńska | medium | 54°05′48″ N | 22°58′06″ E |
M21 | 655 road | medium | 54°04′27″ N | 22°54′48″ E |
M22 | Północna | medium | 54°06′51″ N | 22°58′12″ E |
M23 | S. Staniszewskiego | medium | 54°05′15″ N | 22°56′47″ E |
H1 | Gen. K. Pułaskiego | high | 54°07′58″ N | 22°57′09″ E |
H2 | Gen. K. Pułaskiego | high | 54°07′41″ N | 22°56′51″ E |
H3 | Armii Krajowej | high | 54°07′41″ N | 22°56′18″ E |
H4 | M. Reja | high | 54°07′20″ N | 22°55′46″ E |
H5 | M. Reja | high | 54°08′10″ N | 22°55′51″ E |
H6 | Szpitalna | high | 54°07′09″ N | 22°55′26″ E |
H7 | A. Wierusza-Kowalskiego | high | 54°07′34″ N | 22°56′19″ E |
H8 | Gen. Z. Podhorskiego | high | 54°06′35″ N | 22°56′03″ E |
H9 | Utrata | high | 54°06′16″ N | 22°56′15″ E |
H10 | T. Kościuszki | high | 54°06′07″ N | 22°55′41″ E |
H11 | Wojska Polskiego | high | 54°05′20″ N | 22°55′45″ E |
H12 | S61 expressway | high | 54°05′29″ N | 22°52′11″ E |
H13 | Wojska Polskiego | high | 54°04′11″ N | 22°56′00″ E |
Descriptive Statistics (n = 54) | Value (pcs/L) |
---|---|
Mean | 354.72 |
Median | 307.94 |
Maximum | 1180.25 |
Minimum | 1.94 |
Rank | 1178.31 |
SD | 311.72 |
Total number of MPs and TWPs | 19,154.92 |
Coefficient of variation | 87.88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierzyńska, K.; Pol, W.; Martyniuk, M.; Zieliński, P. Traffic Intensity as a Factor Influencing Microplastic and Tire Wear Particle Pollution in Snow Accumulated on Urban Roads. Water 2024, 16, 2907. https://doi.org/10.3390/w16202907
Mierzyńska K, Pol W, Martyniuk M, Zieliński P. Traffic Intensity as a Factor Influencing Microplastic and Tire Wear Particle Pollution in Snow Accumulated on Urban Roads. Water. 2024; 16(20):2907. https://doi.org/10.3390/w16202907
Chicago/Turabian StyleMierzyńska, Karolina, Wojciech Pol, Monika Martyniuk, and Piotr Zieliński. 2024. "Traffic Intensity as a Factor Influencing Microplastic and Tire Wear Particle Pollution in Snow Accumulated on Urban Roads" Water 16, no. 20: 2907. https://doi.org/10.3390/w16202907
APA StyleMierzyńska, K., Pol, W., Martyniuk, M., & Zieliński, P. (2024). Traffic Intensity as a Factor Influencing Microplastic and Tire Wear Particle Pollution in Snow Accumulated on Urban Roads. Water, 16(20), 2907. https://doi.org/10.3390/w16202907