N-Chloramine Functionalized Polymer Gels for Point-of-Use Water Disinfection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Hydantoin-Containing Crosslinked Networks or Polymer Gels
2.2. Styrene Controls
2.3. Loading Gels with Chlorine
2.4. Chlorine Analysis in Solution
2.5. Quantification of Chlorine Loaded in the Gels
2.6. Chlorine Release Measurements
2.7. Bacteria Inactivation Tests
2.7.1. Preparation of E. coli Suspension
2.7.2. Preparation of Free Chlorine Solution
2.7.3. Inactivation of E. coli with Low Doses of Free Chlorine
2.7.4. Inactivation of E. coli with the Chlorinated Polymer Gels
2.7.5. Chlorinated Polymer Gels Combined with the MadiDrop or the Copper Screen
2.8. AI Tool Use
3. Results and Discussion
3.1. Quantification of Chlorine Loaded in the Gels
3.2. Chlorine Release Tests
3.3. Bacteria Inactivation Efficacy Tests
3.3.1. E. coli Inactivation Tests with Low Doses of Free Chlorine
3.3.2. E. coli Inactivation Tests with Chlorinated Polymer Gels
3.3.3. Effect of Gel Cl+ Content in Bacteria Inactivation Efficacy
3.3.4. Effect of Gel Chlorination Time on Bacteria Inactivation Efficacy
3.3.5. Polymer Gels Combined with the MadiDrop (MD) and/or Copper Screen
3.4. Silver–Chlorine Interaction
3.5. Gel Rechargeability Preliminary Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Synthesis of the Chloramine Precursor 3-(4′-Vinylbenzyl)-5,5-dimethylhydantion (VBDMH) Monomer
Appendix B. Gel Formulations
Molar Ratio | ||||
VBDMH:PEGMA (mol eq.) | 1:0 | 1:0.5 | 1:1 | 1:5 |
VBDMH:HDDA (mol eq.) | 1:0.1 | 1:0.1 | 1:0.2 | 1:0.5 |
Reagent Amount | ||||
VBDMH (g) | 0.5 | |||
PEGMA (mL) | 0 | 0.47 | 0.93 | 4.64 |
HDDA (μL) | 46 | 46 | 92 | 229 |
Photo-initiator, 1% total mass (mg) | 5.5 | 10.6 | 16.2 | 58.5 |
DMF (mL) | 1.67 | 1.67 | 1.67 | 3.33 |
Appendix C. Gel Washes
Appendix D. Quantification of Chlorine Loaded in the Gels
References
- World Health Organization. “Drinking-Water”. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 8 March 2023).
- Dillingham, R.; Guerrant, R.L. Childhood stunting: Measuring and stemming the staggering costs of inadequate water and sanitation. Lancet 2004, 363, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Clasen, T.; Edmondson, P. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int. J. Hyg. Environ. Health 2006, 209, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.T.; Straub, T.M.; Gerba, C.P. Inactivation of coliphage MS-2 and poliovirus by copper, silver, and chlorine. Can. J. Microbiol. 1992, 38, 430–435. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yang, X.; Cizmas, L.; McDonald, T.J.; Luque, R.; Sayes, C.M.; Yuan, B.; Dionysiou, D.D. Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination. Chem. Eng. J. 2017, 317, 777–792. [Google Scholar] [CrossRef]
- Chen, A.; Peng, H.; Blakey, I.; Whittaker, A.K. Biocidal Polymers: A Mechanistic Overview. Polym. Rev. 2016, 57, 276–310. [Google Scholar] [CrossRef]
- Si, Y.; Li, J.; Zhao, C.; Deng, Y.; Ma, Y.; Wang, D.; Sun, G. Biocidal and Rechargeable N-Halamine Nanofibrous Membranes for Highly Efficient Water Disinfection. ACS Biomater. Sci. Eng. 2017, 3, 854–862. [Google Scholar] [CrossRef]
- Ahmed, A.E.-S.I.; Cavalli, G.; Bushell, M.E.; Wardell, J.N.; Pedley, S.; Charles, K.; Hay, J.N. New Approach To Produce Water Free of Bacteria, Viruses, and Halogens in a Recyclable System. Appl. Environ. Microbiol. 2011, 77, 847–853. [Google Scholar] [CrossRef]
- Timofeeva, L.; Kleshcheva, N. Antimicrobial polymers: Mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 2011, 89, 475–492. [Google Scholar] [CrossRef]
- Jain, S.; Sahanoon, O.K.; Blanton, E.; Schmitz, A.; Wannemuehler, K.A.; Hoekstra, R.M.; Quick, R.E. Sodium Dichloroisocyanurate Tablets for Routine Treatment of Household Drinking Water in Periurban Ghana: A Randomized Controlled Trial. Am. J. Trop. Med. Hyg. 2010, 82, 16–22. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 25 March 2020).
- Firth, J.; Balraj, V.; Muliyil, J.; Roy, S.; Rani, L.M.; Chandresekhar, R.; Kang, G. Point-of-Use Interventions to Decrease Contamination of Drinking Water: A Randomized, Controlled Pilot Study on Efficacy, Effectiveness, and Acceptability of Closed Containers, Moringa oleifera, and In-home Chlorination in Rural South India. Am. J. Trop. Med. Hyg. 2010, 82, 759–765. [Google Scholar] [CrossRef]
- Patil, R.A.; Ahmad, D.; Kausley, S.B.; Balkunde, P.L.; Malhotra, C.P. A compact point-of-use water purification cartridge for household use in developing countries. J. Water Health 2015, 13, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Lantagne, D.S.; Cardinali, F.; Blount, B.C. Disinfection By-Product Formation and Mitigation Strategies in Point-of-Use Chlorination with Sodium Dichloroisocyanurate in Tanzania. Am. J. Trop. Med. Hyg. 2010, 83, 135–143. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Drinking Water Regulations and Contaminants. Available online: https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants (accessed on 4 January 2021).
- Abad, F.X.; Pintó, R.M.; Diez, J.M.; Bosch, A. Disinfection of human enteric viruses in water by copper and silver in combination with low levels of chlorine. Appl. Environ. Microbiol. 1994, 60, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Biurrun, A.; Caballero, L.; Pelaz, C.; León, E.; Gago, A. Treatment of a Legionella pneumophila-Colonized Water Distribution System Using Copper-Silver Ionization and Continuous Chlorination. Infect. Control Hosp. Epidemiol. 1999, 20, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.; Liu, Y.-C.; Huang, W.; Shih, H.; Wann, S.; Lee, S.; Tsai, H.; Li, C.; Chao, H.; et al. Efficacy of point-of-entry copper–silver ionisation system in eradicating Legionella pneumophila in a tropical tertiary care hospital: Implications for hospitals contaminated with Legionella in both hot and cold water. J. Hosp. Infect. 2008, 68, 152–158. [Google Scholar] [CrossRef]
- Cromeans, T.L.; Kahler, A.M.; Hill, V.R. Inactivation of Adenoviruses, Enteroviruses, and Murine Norovirus in Water by Free Chlorine and Monochloramine. Appl. Environ. Microbiol. 2010, 76, 1028–1033. [Google Scholar] [CrossRef]
- Liu, Z.; Stout, J.E.; Tedesco, L.; Boldin, M.; Hwang, C.; Diven, W.F.; Yu, V.L. Controlled Evaluation of Copper-Silver Ionization in Eradicating Legionella pneumophila from a Hospital Water Distribution System. J. Infect. Dis. 1994, 169, 919–922. [Google Scholar] [CrossRef]
- Lucier, K.J.; Dickson-Anderson, S.E.; Schuster-Wallace, C.J. Effectiveness of silver and copper infused ceramic drinking water filters in reducing microbiological contaminants. J. Water Supply Res. Technol. 2017, 66, 528–536. [Google Scholar] [CrossRef]
- Straub, T.M.; Gerba, C.P.; Zhou, X.; Price, R.; Yahya, M.T. Synergistic inactivation of Escherichia coli and MS-2 coliphage by chloramine and cupric chloride. Water Res. 1995, 29, 811–818. [Google Scholar] [CrossRef]
- Yahya, M.T.; Landeen, L.K.; Messina, M.C.; Kutz, S.M.; Schulze, R.; Gerba, C.P. Disinfection of bacteria in water systems by using electrolytically generated copper:silver and reduced levels of free chlorine. Can. J. Microbiol. 1990, 36, 109–116. [Google Scholar] [CrossRef]
- Estrella-You, A.; Smith, J.A. Synergistic Bacterial Inactivation by Silver Ions and Free Chlorine in Natural Waters. J. Environ. Eng. 2022, 148, 04022072. [Google Scholar] [CrossRef]
- Harris, J.D. Improving Silver-Ceramic-Based Point-of-Use Water Treatment with Novel Copper Addition and Commercial Water Filters. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2023. [Google Scholar]
- Dong, A.; Wang, Y.-J.; Gao, Y.; Gao, T.; Gao, G. Chemical Insights into Antibacterial N-Halamines. Chem. Rev. 2017, 117, 4806–4862. [Google Scholar] [CrossRef] [PubMed]
- Hui, F.; Debiemme-Chouvy, C. Antimicrobial N-Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications. Biomacromolecules 2013, 14, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Bastarrachea, L.J.; McLandsborough, L.A.; Peleg, M.; Goddard, J.M. Antimicrobial N-halamine Modified Polyethylene: Characterization, Biocidal Efficacy, Regeneration, and Stability. J. Food Sci. 2014, 79, E887–E897. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Worley, S.D.; Kim, J.; Wei, C.-I.; Chen, T.-Y.; Santiago, J.I.; Williams, J.F.; Sun, G. Biocidal Poly(styrenehydantoin) Beads for Disinfection of Water. Ind. Eng. Chem. Res. 2003, 42, 280–284. [Google Scholar] [CrossRef]
- McLennan, S.D.; Peterson, L.A.; Rose, J.B. Comparison of Point-of-Use Technologies for Emergency Disinfection of Sewage-Contaminated Drinking Water. Appl. Environ. Microbiol. 2009, 75, 7283–7286. [Google Scholar] [CrossRef]
- Coulliette, A.D.; Enger, K.S.; Weir, M.H.; Rose, J.B. Risk reduction assessment of waterborne Salmonella and Vibrio by a chlorine contact disinfectant point-of-use device. Int. J. Hyg. Environ. Health 2013, 216, 355–361. [Google Scholar] [CrossRef]
- Tsao, T.; Williams, D.E.; Worley, C.G.; Worley, S.D. Novel N-Halamine Disinfectant Compounds. Biotechnol. Prog. 1991, 7, 60–66. [Google Scholar] [CrossRef]
- Liang, J.; Wu, R.; Huang, T.S.; Worley, S.D. Polymerization of a hydantoinylsiloxane on particles of silicon dioxide to produce a biocidal sand. J. Appl. Polym. Sci. 2005, 97, 1161–1166. [Google Scholar] [CrossRef]
- Qian, L.; Sun, G. Durable and regenerable antimicrobial textiles: Synthesis and applications of 3-methylol-2,2,5,5-tetramethyl-imidazolidin-4-one (MTMIO). J. Appl. Polym. Sci. 2003, 89, 2418–2425. [Google Scholar] [CrossRef]
- E Williams, D.; Elder, E.D.; Worley, S.D. Is free halogen necessary for disinfection? Appl. Environ. Microbiol. 1988, 54, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, G. Durable and refreshable polymeric N-halamine biocides containing 3-(4′-vinylbenzyl)-5,5-dimethylhydantoin. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3348–3355. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Chen, Z.; Sun, Y. N-Halamine-Based Antimicrobial Additives for Polymers: Preparation, Characterization, and Antimicrobial Activity. Ind. Eng. Chem. Res. 2006, 45, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- Demir, B.; Broughton, R.M.; Qiao, M.; Huang, T.-S.; Worley, S.D. N-Halamine Biocidal Materials with Superior Antimicrobial Efficacies for Wound Dressings. Molecules 2017, 22, 1582. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, G. Synthesis, Characterization, and Antibacterial Activities of Novel N-Halamine Polymer Beads Prepared by Suspension Copolymerization. Macromolecules 2002, 35, 8909–8912. [Google Scholar] [CrossRef]
- Panangala, V.; Liu, L.; Sun, G.; Worley, S.; Mitra, A. Inactivation of rotavirus by new polymeric water disinfectants. J. Virol. Methods 1997, 66, 263–268. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, X.; Jie, Z.; Yang, H.; Yang, S.; Liang, J. Regenerable antimicrobial N-halamine/silica hybrid nanoparticles. J. Nanoparticle Res. 2014, 16, 2454. [Google Scholar] [CrossRef]
- Faust Osman, S.D.; Aly, M. Chemistry of Water Treatment, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Miner, N. Effective Use of Bleach as an Antiseptic and Disinfectant. Microbe Mag. 2006, 1, 257. [Google Scholar] [CrossRef]
- Singh, R.; Edokpayi, J.N.; Odiyo, J.O.; Smith, J.A. E. coli Inactivation by Metals and Effects of Changes in Water Chemistry. J. Environ. Eng. 2019, 145, 04018136. [Google Scholar] [CrossRef]
- Ehdaie, B.; Krause, C.; Smith, J.A. Porous Ceramic Tablet Embedded with Silver Nanopatches for Low-Cost Point-of-Use Water Purification. Environ. Sci. Technol. 2014, 48, 13901–13908. [Google Scholar] [CrossRef]
- Estrella-You, A.; Harris, J.D.; Singh, R.; Smith, J.A. Inactivation of Waterborne Pathogens by Copper and Silver Ions, Free Chlorine, and N-Chloramines in Point-of-Use Technology: A Review. In Water Purification: Processes, Applications and Health Effects; LeBlanc, P., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022; Chapter 1; pp. 1–88. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrella-You, A.; Duti, I.J.; Luo, Q.; Harris, J.D.; Letteri, R.A.; Smith, J.A. N-Chloramine Functionalized Polymer Gels for Point-of-Use Water Disinfection. Water 2024, 16, 3128. https://doi.org/10.3390/w16213128
Estrella-You A, Duti IJ, Luo Q, Harris JD, Letteri RA, Smith JA. N-Chloramine Functionalized Polymer Gels for Point-of-Use Water Disinfection. Water. 2024; 16(21):3128. https://doi.org/10.3390/w16213128
Chicago/Turabian StyleEstrella-You, Ana, Israt Jahan Duti, Qinmo Luo, Jamie D. Harris, Rachel A. Letteri, and James A. Smith. 2024. "N-Chloramine Functionalized Polymer Gels for Point-of-Use Water Disinfection" Water 16, no. 21: 3128. https://doi.org/10.3390/w16213128
APA StyleEstrella-You, A., Duti, I. J., Luo, Q., Harris, J. D., Letteri, R. A., & Smith, J. A. (2024). N-Chloramine Functionalized Polymer Gels for Point-of-Use Water Disinfection. Water, 16(21), 3128. https://doi.org/10.3390/w16213128