Drought Characterization Using Multiple Indices over the Abbay Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Descriptions
2.2. Method of Data Analysis
2.2.1. SPI
2.2.2. eMODIS-NDVI Based Vegetation Indices
2.2.3. Vegetation Condition Index (VCI)
2.2.4. Drought Severity Index (DSI)
2.2.5. Assessment of Hydrological Drought
3. Results
3.1. Agricultural Drought Analysis
3.1.1. SPI at 3-Month Timescales
3.1.2. SPEI at Three-Month Timescales
3.1.3. Vegetation Condition Index
3.1.4. Drought Severity Index (DSI)
3.2. Hydrological Drought Assessment
3.2.1. SPI at 12-Month Timescales
3.2.2. SPEI at 12 Month Timescales
4. Discussion
4.1. Impacts of Agricultural and Hydrological Droughts
4.2. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchonkouang, R.D.; Onyeaka, H.; Nkoutchou, H. Assessing the vulnerability of food supply chains to climate change-induced disruptions. Sci. Total Environ. 2024, 920, 171047. [Google Scholar] [CrossRef] [PubMed]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Scafetta, N. Impacts and risks of “realistic” global warming projections for the 21st century. Geosci. Front. 2024, 15, 101774. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Li, Y.; Wang, J. A century-long analysis of global warming and earth temperature using a random walk with drift approach. Decis. Anal. J. 2023, 7, 100237. [Google Scholar] [CrossRef]
- Klein, T.; Anderegg, W.R.L. A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N. Has global warming already arrived? J. Atmos. Sol.-Terr. Phys. 2019, 182, 31–38. [Google Scholar] [CrossRef]
- IPCC. 2023: Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Korecha, D.; Garedew, W. Monitoring climate extremes using standardized evapotranspiration index and future projection of rainfall and temperature in the wettest parts of southwest Ethiopia. Environ. Chall. 2022, 7, 100517. [Google Scholar] [CrossRef]
- Meilutytė-Lukauskienė, D.; Nazarenko, S.; Kobets, Y.; Akstinas, V.; Sharifi, A.; Haghighi, A.T.; Hashemi, H.; Kokorīte, I.; Ozolina, B. Hydro-meteorological droughts across the Baltic Region: The role of the accumulation periods. Sci. Total Environ. 2024, 913, 169669. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.; Huang, Q.; Leng, G.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Yin, J.; Xu, C.-Y.; Chen, H. Drought hazard transferability from meteorological to hydrological propagation. J. Hydrol. 2020, 585, 124761. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Liu, S.; Shi, H.; Niu, J.; Chen, J.; Kuang, X. Assessing future socioeconomic drought events under a changing climate over the Pearl River basin in South China. J. Hydrol. Reg. Stud. 2020, 30, 100700. [Google Scholar] [CrossRef]
- Sun, H.; Sun, X.; Chen, J.; Deng, X.; Yang, Y.; Qin, H.; Chen, F.; Zhang, W. Different types of meteorological drought and their impact on agriculture in Central China. J. Hydrol. 2023, 627, 130423. [Google Scholar] [CrossRef]
- Samantaray, A.K.; Ramadas, M.; Panda, R.K. Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble. Agric. Water Manag. 2022, 266, 107568. [Google Scholar] [CrossRef]
- Vorobevskii, I.; Kronenberg, R.; Bernhofer, C. Linking different drought types in a small catchment from a statistical perspective—Case study of the Wernersbach catchment, Germany. J. Hydrol. X 2022, 15, 100122. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, W.; van Oel, P.R.; Lu, J.; Wang, G.; Wang, H. Impacts of different human activities on hydrological drought in the Huaihe River Basin based on scenario comparison. J. Hydrol. Reg. Stud. 2021, 37, 100909. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Laaha, G. Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 2015, 526, 3–14. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Fang, W.; Yang, Y.; Wang, L. Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. J. Hydrol. 2019, 568, 904–918. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Lai, R.; Zhou, Z. Socioeconomic drought analysis by standardized water supply and demand index under changing environment. J. Clean. Prod. 2022, 347, 131248. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, B.; Yang, D.; Wang, T.; Yang, Y.; Ma, T.; Santisirisomboon, J. Future changes in water resources, floods and droughts under the joint impact of climate and land-use changes in the Chao Phraya basin, Thailand. J. Hydrol. 2023, 620, 129454. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Howe, P.D. Extreme weather experience and climate change opinion. Curr. Opin. Behav. Sci. 2021, 42, 127–131. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Y.; Hou, M.Z.; Xiong, Y.; Wu, X.; Lüddeke, C.T.; Huang, L. Advances in subsea carbon dioxide utilization and storage. Energy Rev. 2023, 2, 100016. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.; Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Chalchissa, F.B.; Diga, G.M.; Feyisa, G.L.; Tolossa, A.R. Impacts of extreme agroclimatic indicators on the performance of coffee (Coffea arabica L.) aboveground biomass in Jimma Zone, Ethiopia. Heliyon 2022, 8, e10136. [Google Scholar] [CrossRef]
- Moisa, M.B.; Merga, B.B.; Gemeda, D.O. Multiple indices-based assessment of agricultural drought: A case study in Gilgel Gibe Sub-basin, Southern Ethiopia. Theor. Appl. Clim. 2022, 148, 455–468. [Google Scholar] [CrossRef]
- Shao, W.; Kam, J. Retrospective and prospective evaluations of drought and flood. Sci. Total Environ. 2020, 748, 141155. [Google Scholar] [CrossRef]
- Gebremichael, H.B.; Raba, G.A.; Beketie, K.T.; Feyisa, G.L.; Siyoum, T. Changes in daily rainfall and temperature extremes of upper Awash Basin, Ethiopia. Sci. Afr. 2022, 16, e01173. [Google Scholar] [CrossRef]
- Mera, G.A. Drought and its impacts in Ethiopia. Weather Clim. Extrem. 2018, 22, 24–35. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Chang. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Holden, S.; Shiferaw, B. Land degradation, drought and food security in a less-favoured area in the Ethiopian highlands: A bio-economic model with market imperfections. Agric. Econ. 2004, 30, 31–49. [Google Scholar]
- Wouterse, F.; Andrijevic, M.; Schaeffer, M. The microeconomics of adaptation: Evidence from smallholders in Ethiopia and Niger. World Dev. 2022, 154, 105884. [Google Scholar] [CrossRef]
- Hirvonen, K.; Sohnesen, T.P.; Bundervoet, T. Impact of Ethiopia’s 2015 drought on child undernutrition. World Dev. 2020, 131, 104964. [Google Scholar] [CrossRef]
- Smith, L.C.; Frankenberger, T.R. Recovering from severe drought in the drylands of Ethiopia: Impact of Comprehensive Resilience Programming. World Dev. 2022, 156, 105829. [Google Scholar] [CrossRef]
- Wubneh, M.A.; Alemu, M.G.; Fekadie, F.T.; Worku, T.A.; Demamu, M.T.; Aman, T.F. Meteorological and hydrological drought monitoring and trend analysis for selected gauged watersheds in the Lake Tana basin, Ethiopia: Under future climate change impact scenario. Sci. Afr. 2023, 20, e01738. [Google Scholar] [CrossRef]
- Borgomeo, E.; Vadheim, B.; Woldeyes, F.B.; Alamirew, T.; Tamru, S.; Charles, K.J.; Kebede, S.; Walker, O. The Distributional and Multi-Sectoral Impacts of Rainfall Shocks: Evidence From Computable General Equilibrium Modelling for the Awash Basin, Ethiopia. Ecol. Econ. 2018, 146, 621–632. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Korecha, D.; Garedew, W. Evidences of climate change presences in the wettest parts of southwest Ethiopia. Heliyon 2021, 7, e08009. [Google Scholar] [CrossRef]
- Bogale, G.A.; Erena, Z.B. Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia. J. Appl. Anim. Res. 2022, 50, 471–489. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Korecha, D.; Garedew, W. Determinants of climate change adaptation strategies and existing barriers in Southwestern parts of Ethiopia. Clim. Serv. 2023, 30, 100376. [Google Scholar] [CrossRef]
- Shitu, K.; Hymiro, A.; Tesfaw, M.; Abebe, T. Temporal rainfall variability and drought characterization in Cheleka Watershed, Awash River Basin, Ethiopia. J. Hydrol. Reg. Stud. 2024, 51, 101663. [Google Scholar] [CrossRef]
- Bedane, H.R.; Beketie, K.T.; Fantahun, E.E.; Feyisa, G.L.; Anose, F.A. The impact of rainfall variability and crop production on vertisols in the central highlands of Ethiopia. Environ. Syst. Res. 2022, 11, 26. [Google Scholar] [CrossRef]
- Wolteji, B.N.; Bedhadha, S.T.; Gebre, S.L.; Alemayehu, E.; Gemeda, D.O. Multiple Indices Based Agricultural Drought Assessment in the Rift Valley Region of Ethiopia. Environ. Chall. 2022, 7, 100488. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Feyssa, D.H.; Garedew, W. Meteorological data trend analysis and local community perception towards climate change: A case study of Jimma City, Southwestern Ethiopia. Environ. Dev. Sustain. 2020, 23, 5885–5903. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef] [PubMed]
- Biazin, B.; Sterk, G. Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agric. Ecosyst. Environ. 2013, 164, 100–113. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; van der Veen, A.; Maathuis, B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 309–321. [Google Scholar] [CrossRef]
- Dercon, S. Growth and shocks: Evidence from rural Ethiopia. J. Dev. Econ. 2004, 74, 309–329. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide (WMO—No. 1090); World Meteorological Organization (WMO): Geneva, Switzerland, 2012. [Google Scholar]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitivity to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Potop, V.; Boroneant, C.; Monzny, M.; Stepanek, P.; Shalak, P. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol. 2014, 115, 563–581. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A remotely sensed global terrestrial drought severity indez. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought. In Research Paper No. 45; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Zhang, Q.; Yu, H.; Sun, P.; Singh, V.P.; Shi, P. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Chang. 2019, 172, 298–306. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Bokusheva, R.; Kogan, F.; Vitkovskaya, I.; Conradt, S.; Batyrbayeva, M. Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agric. For. Meteorol. 2016, 220, 200–206. [Google Scholar] [CrossRef]
- Federal Democratic Republic of Ethiopia Abbay Basin Authority. 2016. Available online: https://aba.gov.et/ (accessed on 27 March 2024).
- Tibebe, D.; Teferi, E.; Bewket, W.; Zeleke, G. Climate induced water risks on agriculture in the Abbay river basin: A review. Front. Water 2022, 4, 961948. [Google Scholar] [CrossRef]
- Tekleab, S.; Mohamed, Y.; Uhlenbrook, S. Hydro-climatic trends in the Abay/Upper Blue Nile basin, Ethiopia. Phys. Chem. Earth Parts A/B/C 2013, 61, 32–42. [Google Scholar] [CrossRef]
- Climate-Smart Agriculture Sourcebook; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b21f2087-f398-4718-8461-b92afc82e617/content (accessed on 25 September 2024).
- Harishnaika, N.; Ahmed, S.A.; Kumar, S.; Arpitha, M. Computation of the spatio-temporal extent of rainfall and long-term meteorological drought assessment using standardized precipitation index over Kolar and Chikkaballapura districts, Karnataka during 1951–2019. Remote Sens. Appl. 2022, 27, 100768. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Dejene, I.N.; Wedajo, G.K.; Bayissa, Y.A.; Abraham, A.M.; Cherinet, K.G. Satellite rainfall performance evaluation and application to monitor meteorological drought: A case of Omo-Gibe basin, Ethiopia. Nat. Hazards 2023, 119, 167–201. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of vegetation to drought and yield monitoring based on NDVI and SIF. Catena 2022, 219, 106328. [Google Scholar] [CrossRef]
- Merga, B.B.; Moisa, M.B.; Negash, D.A.; Ahmed, Z.; Gemeda, D.O. Land Surface Temperature Variation in Response to Land Use Land-Cover Dynamics: A Case of Didessa River Sub-basin in Western Ethiopia. Earth Syst. Environ. 2022, 6, 803–815. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A comparative review on the use of normalized difference vegetation index (NDVI) in the ear of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Nabizada, A.F.; Rousta, I.; Mozaffari, G.; Dalvi, M.; Olafsson, H.; Siedliska, A.; Krzyszczak, J. A remotely sensed study of the impact of meteorological parameters on vegetation for the eastern basins of Afghanistan. Earth Sci. Inform. 2023, 16, 1293–1312. [Google Scholar] [CrossRef]
- Kogan, F.; Adamenko, T.; Guo, W. Global and regional drought dynamics in the climate warming era. Remote Sens. Lett. 2013, 4, 364–372. [Google Scholar] [CrossRef]
- Wu, R.; Liu, Y.; Xing, X. Evaluation of evapotranspiration deficit index for agricultural drought monitoring in North China. J. Hydrol. 2021, 596, 126057. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Eliasson, D.O.P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef]
- Li, X.-X.; Ju, H.; Sarah, G.; Yan, C.-R.; Batchelor, W.D.; Liu, Q. Spatiotemporal variation of drought characteristics in the HuangHuai-Hai Plain, China under the climate change scenario. J. Integr. Agric. 2017, 16, 2308–2322. [Google Scholar] [CrossRef]
- Anghel, C.G.; Stanca, S.C.; Ilinca, C. Two-Parameter Probability Distributions: Methods, Techniques and Comparative Analysis. Water 2023, 15, 3435. [Google Scholar] [CrossRef]
- Richman, M.B.; Leslie, L.M.; Segele, Z.T. Classifying Drought in Ethiopia Using Machine Learning. Procedia Comput. Sci. 2016, 95, 229–236. [Google Scholar] [CrossRef]
- Cherinet, A.; Tadesse, C.; Abebe, T. Drought and Flood Extreme Events and Management Strategies in Ethiopia. J. Geogr. Nat. Disasters 2022, 12, 248. [Google Scholar] [CrossRef]
- Hermans, K.; Garbe, L. Droughts, livelihoods, and human migration in northern Ethiopia. Reg. Env. Chang. 2019, 19, 1101–1111. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M.; et al. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 689, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Sanginabadi, H.; Saghafian, B.; Delavar, M. Couples Groundwater Drought and Water Scarcity Index for Intensively Overdrafted Aquifers. J. Hydrol. Eng. 2019, 24, 04019003. [Google Scholar] [CrossRef]
- Seka, A.M.; Zhang, J.; Zhang, D.; Ayele, E.G.; Han, J.; Prodhan, F.A.; Zhang, G.; Liu, Q. Hydrological drought evaluation using GRACE satellite-based drought index over the lake basins, East Africa. Sci. Total Environ. 2022, 852, 158425. [Google Scholar] [CrossRef]
- Bisrat, E.; Berhanu, B. Chapter 21—Drought in Ethiopia: Temporal and spatial characteristics. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–274. [Google Scholar] [CrossRef]
- Haile, B.T.; Zeleke, T.T.; Beketie, K.T.; Ayal, D.Y.; Feyisa, G.L. Analysis of El Niño Southern Oscillation and its impact on rainfall distribution and productivity of selected cereal crops in Kembata Alaba Tembaro zone. Clim. Serv. 2021, 23, 100254. [Google Scholar] [CrossRef]
- Tofu, D.A.; Woldeamanuel, T.; Haile, F. Smallholder farmers’ vulnerability and adaptation to climate change induced shocks: The case of Northern Ethiopia highlands. J. Agric. Food Res. 2022, 8, 100312. [Google Scholar] [CrossRef]
- Sinore, T.; Wang, F. Impact of climate change on agriculture and adaptation strategies in Ethiopia: A meta-analysis. Heliyon 2024, 10, e26103. [Google Scholar] [CrossRef] [PubMed]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Al Kafy, A.; Bakshi, A.; Saha, M.; Faisal, A.A.; Almulhim, A.I.; Rahaman, Z.A.; Mohammad, P. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Sci. Total Environ. 2023, 867, 161394. [Google Scholar] [CrossRef]
- Yeleliere, E.; Antwi-Agyei, P.; Guodaar, L. Farmers response to climate variability and change in rainfed farming systems: Insight from lived experiences of farmers. Heliyon 2023, 9, e19656. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Helgason, W. Assessment of agricultural adaptations to climate change from a water-energy-food nexus perspective. Agric. Water Manag. 2023, 284, 108343. [Google Scholar] [CrossRef]
- Bouteska, A.; Sharif, T.; Bhuiyan, F.; Zoynul Abedin, M. Impacts of the changing climate on agricultural productivity and food security: Evidence from Ethiopia. J. Clean. Prod. 2024, 449, 141793. [Google Scholar] [CrossRef]
- Abafogi, M.A.; Gemeda, D.O. Assessment of extreme climate indices in the Somalia National Regional State, eastern Ethiopia. Sustain. Environ. 2024, 10, 2391130. [Google Scholar] [CrossRef]
Data Types | Year | Spatial Resolution | Temporal Resolution | Sources |
---|---|---|---|---|
CHIRPS data | 1981–2022 | 0.05° (5 km) | Monthly | FEWS NET |
eMODIS data | 2003–2022 | 250 m | Dekadal | FEWS NET |
Temperature data | 1981–2022 | Point data | Monthly | EMI |
Station | Extremely Dry | Severely Dry | Extremely Wet | Severely Wet |
---|---|---|---|---|
Alibo | 2005, 2015 | 1982, 1984–1985, 1990, 1994, 2001–2004, 2006, 2009, 2012–2015, 2017, 2018 | 1990, 1998 | 1987, 1989, 1993, 1996–1999, 2006, 2010, 2014, 2016, 2019 |
Bahirdar | 2015 | 1982, 1984, 1987, 1992, 2002, 2005, 2006, 2009, 2012, 2017 | 1990, 1992, 1994–1995, 1999, 2013 | 1987, 1996, 1997, 1998, 2000, 2006 |
Bedele | 2003, 2006, 2014 | 1984, 1991, 1994, 2000, 2002–2005, 2012, 2013 | 1988, 1990, 2007, 2010, 2014, 2019 | 1987, 1992, 1996–1997, 2007–2008, 2017, 2020, 2021 |
Chewahit | 1982,1984, 1990, 1999, 2005 | 1986, 1992, 1995, 1997, 2002–2004, 2009, 2011, 2015, 2017 | 1987, 1990, 1996, 1997, 1998, 2014 | 1983, 1985, 1988, 1992, 1999, 2001, 2006, 2012, 2019, 2021 |
Dibate | 2002, 2005 | 1986, 1990, 2001, 2006, 2009, 2012, 2013 | 1982, 1985, 1990, 1997, 2000, 2008, 2014, 2020 | 1981, 1987, 1990, 1991, 1999, 2008, 2016, 2017 |
Fitche | 1984, 1999, 2005, 2006, 2008, 2015 | 1982, 1988–1989, 1992, 1994, 1997, 2000–2003, 2012–2014 | 1987, 1988, 1990, 1997, 2016, 2019 | 1981–1982, 1985, 1993, 1996, 1998, 2007, 2020 |
Kelem-Meda | 1984, 1999, 2008, 2012 | 1982, 1987, 1992, 2000–2002, 2005, 2009, 2011–2012, 2015, 2017 | 1990, 1998, 2019 | 1981–1983, 1987, 1992, 1993, 1997, 2016, 2019, 2020, 2022 |
Keranio | 2002, 2003, 2005, 2006, 2015 | 1984, 1987, 1988, 1992, 1995, 1999, 2000, 2009, 2012–2013, 2017 | 1982, 1990, 1996, 1998, 2014 | 1987, 1988, 1992, 1997–2000, 2013, 2016 |
Mankush | 1982, 1991, 1995, 2001, 2010 | 1983, 1986, 1987, 1990, 1995, 2002, 2003, 2011, 2015–2016, 2022 | 1981, 1990–1992, 1998 | 1995, 1996, 2006, 2015, 2019 |
Mendi | 1995, 1996 | 1982, 1986, 1990, 1992, 2001, 2005, 2009, 2012–2013 | 1997, 2016, 2017 | 1983, 1985, 1988–1989, 1996, 2008, 2014, 2019, 2022 |
Year | Drought Severity Class | Area (km2) | Area (%) |
---|---|---|---|
2003 | Extreme drought | 70,723.74 | 35.3 |
Severe drought | 60,632.54 | 30.3 | |
Moderate drought | 43,245.98 | 21.6 | |
No drought | 25,550.62 | 12.8 | |
Total | 200,152.88 | 100 | |
2009 | Extreme drought | 83,098.62 | 41.5 |
Severe drought | 62,504.38 | 31.2 | |
Moderate drought | 31,729.34 | 15.9 | |
No drought | 22,820.54 | 11.4 | |
Total | 200,152.88 | 100 | |
2012 | Extreme drought | 130,253.18 | 65.1 |
Severe drought | 36,114.62 | 18.0 | |
Moderate drought | 20,772.06 | 10.4 | |
No drought | 13,013.02 | 6.5 | |
Total | 200,152.88 | 100 | |
2013 | Extreme drought | 98,461.18 | 49.2 |
Severe drought | 45,741.82 | 22.9 | |
Moderate drought | 31,408.7 | 15.7 | |
No drought | 24,541.18 | 12.3 | |
Total | 200,152.88 | 100 | |
2018 | Extreme drought | 86,708.86 | 43.3 |
Severe drought | 48,635.9 | 24.3 | |
Moderate drought | 34,470.3 | 17.2 | |
No drought | 30,337.82 | 15.2 | |
Total | 200,152.88 | 100 | |
2022 | Extreme drought | 98,147.1 | 49.0 |
Severe drought | 33,209.02 | 16.6 | |
Moderate drought | 28,849.18 | 14.4 | |
No drought | 39,947.58 | 20.0 | |
Total | 200,152.88 | 100 |
Station | Extremely Dry | Severely Dry | Extremely Wet | Severely Wet |
---|---|---|---|---|
Alibo | 2003, 2015 | 1986, 2002, 2012, 2018 | 2007 | 1996, 1997, 1998, 2008 |
Bahirdar | 2003 | 2003, 2004, 2009 | 2014 | 1993, 1998, 2000, 2006, 2013, 2014, 2017, 2020 |
Bedele | 2003, 2004 | 1984, 1986, 1995 | 1998, 2007 | 1988, 1993, 2009, 2019, 2020, 2021 |
Chewahit | 1982, 2003, 2004, 2009 | 1998 | 1987, 1998, 2000, 2001, 2007, 2014, 2017, 2021 | |
Dibate | 2002–2005, 2009, 2012 | 1998, 1985, 1988, 1989, 2014 | 1991, 1999, 2016 | |
Fitche | 2002, 2015 | 1992,1998, 2004 | 1989, 2020 | 1993, 1996 |
Kelem-Meda | 1984 | 1988, 1991, 2003, 2008, 2015 | 2016, 2020 | 1993, 1998, 2001, 2019 |
Keranio | 2003 | 1998, 1992, 2002, 2003, 2004, 2005 | 1998, 2014 | 2020 |
Mankush | 1983 | 1986, 1992, 1995, 1997, 2002, 2010 | 1981, 1989, 1991, 1996, 1999, 2008 | |
Mendi | 1992, 1995, 2002, 2003, 2006, 2010 | 2017 | 1989, 2016, 2020–2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gemeda, D.O.; Bejaoui, B.; Farhat, N.; Dejene, I.N.; Fufa Eticha, S.; Girma, T.; Ejeta, T.M.; Jabana, G.B.; Tufa, G.E.; Mamo, M.H.; et al. Drought Characterization Using Multiple Indices over the Abbay Basin, Ethiopia. Water 2024, 16, 3143. https://doi.org/10.3390/w16213143
Gemeda DO, Bejaoui B, Farhat N, Dejene IN, Fufa Eticha S, Girma T, Ejeta TM, Jabana GB, Tufa GE, Mamo MH, et al. Drought Characterization Using Multiple Indices over the Abbay Basin, Ethiopia. Water. 2024; 16(21):3143. https://doi.org/10.3390/w16213143
Chicago/Turabian StyleGemeda, Dessalegn Obsi, Béchir Bejaoui, Nasser Farhat, Indale Niguse Dejene, Soreti Fufa Eticha, Tadelu Girma, Tadesse Mosissa Ejeta, Gamachu Biftu Jabana, Gadise Edilu Tufa, Marta Hailemariam Mamo, and et al. 2024. "Drought Characterization Using Multiple Indices over the Abbay Basin, Ethiopia" Water 16, no. 21: 3143. https://doi.org/10.3390/w16213143
APA StyleGemeda, D. O., Bejaoui, B., Farhat, N., Dejene, I. N., Fufa Eticha, S., Girma, T., Ejeta, T. M., Jabana, G. B., Tufa, G. E., Mamo, M. H., Alo, Z. K., Chalchisa, F. B., Amanuel, J., Disassa, G. A., Kumsa, D. M., Mekonen, L. D., Beyene, E. M., Bortola, G. W., Wagari, M., ... Moisa, M. B. (2024). Drought Characterization Using Multiple Indices over the Abbay Basin, Ethiopia. Water, 16(21), 3143. https://doi.org/10.3390/w16213143