Analysis of Variability of Water Quality Indicators in the Municipality Water Supply System—A Case Study
Abstract
:1. Introduction
- water quality aspect-monitoring water quality parameters (e.g., chlorine content, chemical and microbiological contaminants, and the presence of biofilms);
- environmental aspect-assessing the environmental impact of industrial and agricultural activities;
- economic aspect-analysis of costs related to the maintenance and modernization of infrastructure, as well as the operational efficiency of distribution systems [12].
2. Materials and Methods
2.1. Object of Study
2.2. Water Quality Analysis
2.3. Analysis Procedure
2.4. Assessment of Water Stability (Water Stability Indeks)
3. Results
- DS(I): 25% WTP(I), 37.5% (PT 1), 37.5% (PT 2), 25% (PT 3),
- DS(II): 12.5% WTP(II), 12.5% (PT 1), 25% (PT 2), 0% (PT 3),
- DS(III): 37.5% WTP(III) 25% (PT 1), 25% (PT 2), 14,3% (PT 3),
- DS(IV): 12.5% WTP(IV), 0% (PT 1), 0% (PT 2), 0% (PT 3) (Table 6)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Avila, F.; Asitimbay-Barbecho, G.; Espinoza-Bustamante, M.; Valdiviezo-Gonzales, L.; Sánchez-Cordero, E.; Cabello-Torres, R.; Gutiérrez-Ortega, H. Water Age in Drinking Water Distribution Systems: A Case Study Comparing Tracers and EPANET. Case Stud. Chem. Environ. Eng. 2024, 10, 100817. [Google Scholar] [CrossRef]
- Spencer, C. Water Quality in the Distribution System: A Review. J. AWWA 2012, 104, 48–55. [Google Scholar] [CrossRef]
- Vacs Renwick, D.; Rotert, K. Deteriorating Water Distribution Systems Affect Public Health. Opflow 2019, 45, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.K.; Aggarwal, S. Overview of Drinking Water Distribution System Microbiome and Water Quality. In Encyclopedia of Water: Science, Technology, and Society; Maurice, P.A., Ed.; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Olatunde, K.; Kane Patton, S.; Cameron, L.; Stankus, T.; James Milaham, P. Factors Affecting the Quality of Drinking Water in the United States of America: A Ten-Year Systematic Review. AJWR 2022, 10, 24–34. [Google Scholar] [CrossRef]
- Perveen, S. Amar-Ul-Haque Drinking Water Quality Monitoring, Assessment and Management in Pakistan: A Review. Heliyon 2023, 9, e13872. [Google Scholar] [CrossRef]
- Price, J.I.; Heberling, M.T. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature. Ecol. Econ. 2018, 151, 195–209. [Google Scholar] [CrossRef]
- Wang, H.; Masters, S.; Hong, Y.; Stallings, J.; Falkinham, J.O.; Edwards, M.A.; Pruden, A. Effect of Disinfectant, Water Age, and Pipe Material on Occurrence and Persistence of Legionella, Mycobacteria, Pseudomonas Aeruginosa, and Two Amoebas. Environ. Sci. Technol. 2012, 46, 11566–11574. [Google Scholar] [CrossRef]
- Lee, D.; Calendo, G.; Kopec, K.; Henry, R.; Coutts, S.; McCarthy, D.; Murphy, H.M. The Impact of Pipe Material on the Diversity of Microbial Communities in Drinking Water Distribution Systems. Front. Microbiol. 2021, 12, 779016. [Google Scholar] [CrossRef]
- Learbuch, K.L.G.; Smidt, H.; van der Wielen, P.W.J.J. Influence of Pipe Materials on the Microbial Community in Unchlorinated Drinking Water and Biofilm. Water Res. 2021, 194, 116922. [Google Scholar] [CrossRef]
- Goraj, W.; Pytlak, A.; Kowalska, B.; Kowalski, D.; Grządziel, J.; Szafranek-Nakonieczna, A.; Gałązka, A.; Stępniewska, Z.; Stępniewski, W. Influence of Pipe Material on Biofilm Microbial Communities Found in Drinking Water Supply System. Environ. Res. 2021, 196, 110433. [Google Scholar] [CrossRef]
- Mian, H.R.; Hu, G.; Hewage, K.; Rodriguez, M.J.; Sadiq, R. Drinking Water Management Strategies for Distribution Networks: An Integrated Performance Assessment Framework. J. Environ. Manag. 2023, 325, 116537. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wan, Y.; Yu, Y.; Gu, J.; Wang, G. Evaluating the Chemical Stability in Drinking Water Distribution System by Corrosivity and Precipitation Potential. Water Supply 2018, 18, 383–390. [Google Scholar] [CrossRef]
- Zhou, Q.; Bian, Z.; Yang, D.; Fu, L. Stability of Drinking Water Distribution Systems and Control of Disinfection By-Products. Toxics 2023, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- WHO. Copper in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO/SDE/WSH/03.04/88; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Regulation of the Minister of Health of 7 December 2017 on the quality of water intended for human consumption. J. Laws 2007.
- Vreeburg, I.J.H.G.; Boxall, D.J.B. Discolouration in Potable Water Distribution Systems: A Review. Water Res. 2007, 41, 519–529. [Google Scholar] [CrossRef]
- Khatun, M.K.; Nahar, K.; Alauddin, J.; Al-Reza, S.M. Assessment of Drinking Water Quality Using Physico-Chemical Parameters around Islamic University, Kushtia, Bangladesh. Int. J. Sci. Res. Arch. 2022, 6, 001–005. [Google Scholar] [CrossRef]
- Prest, E.I. Biological Stability in Drinking Water Distribution Systems: A Novel Approach for Systematic Microbial Water Quality Monitoring. Front Microbiol. 2016, 7, 1–24. [Google Scholar]
- Available online: https://Susza.Iung.Pulawy.Pl/Mapa-Kategorii-Gleby (accessed on 20 October 2024).
- Available online: https://Klimat.Imgw.Pl/Klimat (accessed on 20 October 2024).
- Wolska, M. Removal of Nutrients in Water Purification Technology for Human Consumption, Wrocław. 2015. (In Polish) [Google Scholar]
- Buján, S.; González-Ferreiro, E.; Barreiro-Fernández, L.; Santé, I.; Corbelle, E.; Miranda, D. Classification of Rural Landscapes from Low-Density Lidar Data: Is It Theoretically Possible? Int. J. Remote Sens. 2013, 34, 5666–5689. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, D.; Xu, Y. The Difference of Primary School Teachers’ Online Teaching Satisfaction in Subject and Educational Level. Front. Psychol. 2023, 13, 1027591. [Google Scholar] [CrossRef]
- Acar, E.F.; Sun, L. A Generalized Kruskal–Wallis Test Incorporating Group Uncertainty with Application to Genetic Association Studies. Biometrics 2013, 69, 427–435. [Google Scholar] [CrossRef]
- Bargagliotti, A.E.; Greenwell, R.N. Combinatorics and Statistical Issues Related to the Kruskal–Wallis Statistic. Commun. Stat. Simul. Comput. 2015, 44, 533–550. [Google Scholar] [CrossRef]
- Dinno, A. Nonparametric Pairwise Multiple Comparisons in Independent Groups Using Dunn’s Test. Stata J. Promot. Commun. Stat. Stata 2015, 15, 292–300. [Google Scholar] [CrossRef]
- Dwyer, C.L.; Craft, W.H.; Tomlinson, D.C.; Tegge, A.N.; Kim-Spoon, J.; Bickel, W.K. Latent Profiles of Regulatory Flexibility in Alcohol Use Disorder: Associations with Delay Discounting and Symptoms of Depression, Anxiety, and Stress. Alcohol Clin. Exp. Res. 2024, 48, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.; Buttke, D.E.; Lovejoy, T.E.; Clark, K.A.; Ashby, E.J.; Alonso Aguirre, A. The Loop Trail “Quest”: Use of a Choice-Based Digital Simulation, An Interactive Video, and a Booklet to Communicate and Analyze Decision-Making of Park Visitors. Environ. Commun. 2021, 15, 1025–1044. [Google Scholar] [CrossRef]
- John, C.; Gopinathan, A.; Singh, K.; Sharma, P.; Sowbharenya, C.; Sarangom, S.B. Clinical Evaluation of Topical Tacrolimus Ointment Usage in Different Stages of Keratoconjunctivitis Sicca in Dogs. Turk. J. Vet. Anim. Sci. 2018, 42, 259–268. [Google Scholar] [CrossRef]
- Atekwana, E.; Atekwana, E.; Rowe, R.; Werkemajr, D.; Legall, F. The Relationship of Total Dissolved Solids Measurements to Bulk Electrical Conductivity in an Aquifer Contaminated with Hydrocarbon. J. Appl. Geophys. 2004, 56, 281–294. [Google Scholar] [CrossRef]
- García-Ávila, F.; Ramos-Fernández, L.; Zhindón-Arévalo, C. Estimation of Corrosive and Scaling Trend in Drinking Water Systems in the City of Azogues, Ecuador. Rev. Ambiente Agua 2018, 13, e2237. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B.; Papciak, D.; Skrzypczak, I. Analysis of Chemical Stability of Tap Water in Terms of Required Level of Technological Safety. Arch. Environ. Prot. 2017, 43, 3–12. [Google Scholar] [CrossRef]
- Vreeburg, J.H.G.; Schippers, D.; Verberk, J.Q.J.C.; van Dijk, J.C. Impact of Particles on Sediment Accumulation in a Drinking Water Distribution System. Water Res. 2008, 42, 4233–4242. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Knibbe, W.-J.; Feng, C.; Liu, W.; Medema, G.; Van Der Meer, W. Potential Impacts of Changing Supply-Water Quality on Drinking Water Distribution: A Review. Water Res. 2017, 116, 135–148. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, A.; Kumar, R.; Sharma, P. Nitrate Contamination in Groundwater and Associated Health Risk Assessment for Indo-Gangetic Plain, India. Groundw. Sustain. Dev. 2023, 23, 100978. [Google Scholar] [CrossRef]
- Erdei-Tombor, P.; Kiskó, G.; Taczman-Brückner, A. Biofilm Formation in Water Distribution Systems. Processes 2024, 12, 280. [Google Scholar] [CrossRef]
- Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Köster, O.; Egli, T. Flow-Cytometric Total Bacterial Cell Counts as a Descriptive Microbiological Parameter for Drinking Water Treatment Processes. Water Res. 2008, 42, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xu, S.; Pei, Y.; Shan, L.; Zheng, W.; Bao, X.; Yuan, Y. Assessment of the Microbiological Safety of Drinking Water in Outdoor Pipe Materials: Biofilm Formation and Chlorine Resistance of Typical Bacteria. Environ. Sci. Water Res. Technol. 2023, 9, 1738–1749. [Google Scholar] [CrossRef]
- Kimbell, L.K.; LaMartina, E.L.; Kappell, A.D.; Huo, J.; Wang, Y.; Newton, R.J.; McNamara, P.J. Cast Iron Drinking Water Pipe Biofilms Support Diverse Microbial Communities Containing Antibiotic Resistance Genes, Metal Resistance Genes, and Class 1 Integrons. Environ. Sci. Water Res. Technol. 2021, 7, 584–598. [Google Scholar] [CrossRef]
- Ashbolt, N.J. Microbial Contamination of Drinking Water and Human Health from Community Water Systems. Curr. Envir. Health Rpt. 2015, 2, 95–106. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Fawell, J.; Nieuwenhuijsen, M.J. Contaminants in Drinking Water. Br. Med. Bull. 2003, 68, 199–208. [Google Scholar] [CrossRef]
- Garrido-Momparler, V.; Peris, M. Smart Sensors in Environmental/Water Quality Monitoring Using IoT and Cloud Services. Trends Environ. Anal. Chem. 2022, 35, e00173. [Google Scholar] [CrossRef]
- Sugiharto, W.H.; Susanto, H.; Prasetijo, A.B. Real-Time Water Quality Assessment via IoT: Monitoring pH, TDS, Temperature, and Turbidity. ISI 2023, 28, 823–831. [Google Scholar] [CrossRef]
- Das, B.; Jain, P.C. Real-Time Water Quality Monitoring System Using Internet of Things. In Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 1–2 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 78–82. [Google Scholar]
- Kovarik, M.L.; Ornoff, D.M.; Melvin, A.T.; Dobes, N.C.; Wang, Y.; Dickinson, A.J.; Gach, P.C.; Shah, P.K.; Allbritton, N.L. Micro Total Analysis Systems: Fundamental Advances and Applications in the Laboratory, Clinic, and Field. Anal. Chem. 2013, 85, 451–472. [Google Scholar] [CrossRef]
DS(I) | DS(II) | DS(III) | DS(IV) | |
---|---|---|---|---|
Length of water mains [km]
| 143.50 82.64 | 75.28 32.94 | 33.90 20.40 | 20.5 13.87 |
Average annual water production [m3/d] | 819 | 695 | 283 | 207 |
Approximate number of people supplied with water from the water supply system | 5642 | 3065 | 1556 | 583 |
Kind of building material | PVC, PE |
Parameter | Unit | Device/Method |
---|---|---|
Temperature | °C | HACCP digital thermometer |
pH | - | |
Conductivity | µS/cm | HQ40D Digital multi-meter kit |
Turbidity | NTU | EUTECHTM TN-100 Turbidimeter |
Phosphorus | mg P-PO43−/L | Spectrophotometer UV VIS DR 6000, Hach-Lange |
Ammonium nitrogen | mg N-NH4+/L | |
Nitrite nitrogen | mg N-NO2−/L | |
Nitrate nitrogen | mg N-NO3−/L | |
Sulfates | mg SO4−/L | |
Chlorides | mg Cl−/L | Titration method |
Hardness | mval/L | |
Alkalinity | mval/L | |
TC, IC, DOC, BDOC * | mg C/L | Total organic carbon analyzer TOC-L, SHIMADZU |
Calcium | mg Ca/L | Agilent 8900 ICP-MS Triple Quad |
Chemical Stability | |
---|---|
Langelier Index (IL) | |
IL = pH − pHs pHs = (9.3 + A + B) − (C + D) Where: pH = pH measured in situ. pHs = pH at saturation pHs A = (log10 [Total dissolved solids (TDS)]–1)/10, B = −13.12 × log10 (°C + 273) + 34.55, C = log10 [Ca2+ mg/L as CaCO3]-0.4 D = log10 [Alcal. as CaCO3] TDS = Cond. × Ke, Cond. –conductivity [µS/cm], Ke = 0.55–0.8, assumed: 0.64 | IL > 0; Water can dissolve calcium compounds, which enhances its corrosive properties, IL = 0; (−0.5 to + 0.5 is considered as a “zero”) Water is stable: it does not tend to precipitate or dissolve calcium carbonate, the corrosion properties are weakened, IL < 0; Water can precipitate lime, which reduces its corrosive properties. |
Ryznar Stability Index (IR) | |
IR = 2 pHs-pH pHs = pH at saturation pH = pH measured in situ. | IR ˃ 8.5 High corrosion 6.8 ˂ IR ˂ 8.5 Low corrosion 6.2 ˂ IR ˂ 6.8 Is considered neutral 5.5 ˂ IR ˂ 6.2 Moderate scale-forming IR ˂ 5.5 Heavy scale likely to form |
Larson Skold Index (ILS) | |
ILS < 0.8 Chlorides and sulfates do not participate in the formation of natural protective layers on steel surfaces (do not cause corrosion), ILS 0.8 ÷ 1.2 Chlorides and sulfates can contribute to the formation of natural layers on steel surfaces, potentially accelerating the corrosion rate. ILS > 1.2 A high rate of localized corrosion is anticipated. | |
Physical stability | |
Water was deemed physically stable if its turbidity was below 0.8 NTU [34,35]. | |
Biological stability | |
Biological stability was evaluated based on the levels of biogenic compounds [22]:
|
Parameter | Unit | DS(I) | DS(II) | ||||||
---|---|---|---|---|---|---|---|---|---|
WTP(I) | PT 1 | PT 2 | PT 3 | WTP(II) | PT 1 | PT 2 | PT 3 | ||
Conductivity | µS/cm | 504.88 | 506.86 | 508.88 | 502.75 | 628.86 | 639.50 | 637.25 | 644.86 |
pH | - | 7.31 | 7.33 | 7.33 | 7.31 | 7.23 | 7.24 | 7.27 | 7.29 |
Turbidity | NTU | 0.68 | 0.82 | 0.79 | 0.69 | 0.65 | 0.73 | 0.74 | 0.68 |
Phosphorus | mg P-PO43−/L | 0.02 | 0.01 | 0.01 | 0.03 | 0.03 | 0.07 | 0.05 | 0.07 |
Ammonium nitrogen | mg N-NH4+/L | 0.10 | 0.03 | 0.03 | 0.03 | 0.04 | 0.07 | 0.02 | 0.03 |
Nitrite nitrogen | mg N-NO2−/L | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
Nitrate nitrogen | mg N-NO3−/L | 0.85 | 1.13 | 1.31 | 1.35 | 3.53 | 3.41 | 3.48 | 3.55 |
Chlorides | mg Cl-/L | 13.98 | 14.20 | 14.64 | 13.76 | 23.52 | 23.74 | 24.41 | 24.09 |
Sulfates | mval/L | 5.44 | 5.43 | 5.44 | 5.46 | 6.38 | 6.39 | 6.37 | 6.33 |
Hardness | mval/L | 5.88 | 5.86 | 5.94 | 5.98 | 7.19 | 6.96 | 7.33 | 7.39 |
TC | mg C/L | 59.01 | 51.33 | 52.09 | 52.70 | 68.62 | 61.51 | 61.188 | 62.99 |
IC | mg C/L | 46.46 | 50.40 | 50.50 | 50.82 | 52.79 | 59.35 | 59.01 | 59.98 |
DOC | mg C/L | 12.53 | 0.93 | 1.58 | 1.87 | 15.71 | 2.17 | 2.18 | 3.01 |
Parameter | Unit | DS(III) | DS(IV) | ||||||
---|---|---|---|---|---|---|---|---|---|
WTP(III) | PT 1 | PT 2 | PT 3 | WTP(IV) | PT 1 | PT 2 | PT 3 | ||
Conductivity | µS/cm | 643.38 | 653.50 | 652.25 | 657.00 | 633.38 | 626.13 | 631.25 | 644.14 |
pH | - | 7.24 | 7.26 | 7.21 | 7.23 | 7.28 | 7.47 | 7.26 | 7.48 |
Turbidity | NTU | 0.68 | 0.83 | 1.25 | 0.73 | 0.91 | 0.85 | 0.99 | 1.00 |
Phosphorus | mg P-PO43−/L | 0.04 | 0.05 | 0.07 | 0.04 | 0.02 | 0.02 | 0.02 | 0.03 |
Ammonium nitrogen | mg N-NH4+/L | 0.12 | 0.02 | 0.03 | 0.02 | 0.09 | 0.05 | 0.05 | 0.05 |
Nitrite nitrogen | mg N-NO2−/L | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Nitrate nitrogen | mg N-NO3−/L | 1.46 | 1.24 | 1.92 | 0.98 | 0.97 | 1.15 | 0.88 | 1.44 |
Chlorides | mg Cl−/L | 3.99 | 3.11 | 3.55 | 2.54 | 23.08 | 24.85 | 24.85 | 24.34 |
Sulfates | mval/L | 7.69 | 7.66 | 7.66 | 7.59 | 6.79 | 6.79 | 6.69 | 6.64 |
Hardness | mval/L | 7.84 | 7.89 | 7.92 | 7.85 | 7.01 | 7.07 | 7.03 | 7.00 |
TC | mg C/L | 74.21 | 71.49 | 74.34 | 71.42 | 64.09 | 63.58 | 64.22 | 66.55 |
IC | mg C/L | 69.40 | 64.84 | 68.55 | 66.59 | 61.80 | 61.05 | 61.70 | 60.20 |
DOC | mg C/L | 4.82 | 6.65 | 5.79 | 4.83 | 2.29 | 2.53 | 2.53 | 6.35 |
N | p | BDOC | |||||||
---|---|---|---|---|---|---|---|---|---|
Min-Max | Mean | Percentage of Samples <0.2 mg Ninorg/L | Min-Max | Mean | Percentage of Samples <0.01 mg P-PO43−/L | Min-Max | Mean | Percentage of Samples <0.25 mg C/L | |
DS(I) | |||||||||
WTP(I) | 0.56–2.53 | 0.96 | 0 | 0.00–0.05 | 0.02 | 50 | 0.06–2.53 | 1.33 | 25 |
PT 1 | 0.61–2.42 | 1.18 | 0 | 0.00–0.04 | 0.01 | 62.5 | 0.01–0.35 | 0.10 | 87.5 |
PT 2 | 0.74–2.25 | 1.18 | 0 | 0.00–0.04 | 0.01 | 62.5 | 0.00–0.45 | 0.17 | 75 |
PT 3 | 0.76–2.73 | 1.39 | 0 | 0.00–0.06 | 0.03 | 37.5 | 0.05–0.63 | 0.20 | 75 |
DS(II) | |||||||||
WTP(II) | 1.85- 4.73 | 3.58 | 0 | 0.00–0.07 | 0.03 | 37.5 | 0.36–2.28 | 1.66 | 0 |
PT 1 | 2.27–4.52 | 3.50 | 0 | 0.00–0.17 | 0.07 | 12.5 | 0.05–0.70 | 0.23 | 62.5 |
PT 2 | 2.26–5.81 | 3.50 | 0 | 0.00–0.11 | 0.05 | 12.5 | 0.01–0.97 | 0.23 | 87.5 |
PT 3 | 1.85–4.88 | 3.59 | 0 | 0.00–0.10 | 0.07 | 14.3 | 0.00–1.35 | 0.32 | 71.4 |
DS(III) | |||||||||
WTP(III) | 0.17–1.93 | 1.08 | 0 | 0.00–0.003 | 0.02 | 25.0 | 0.04–0.68 | 0.24 | 62.5 |
PT 1 | 0.79–2.45 | 1.21 | 0 | 0.00–0.08 | 0.02 | 25.0 | 0.00–0.74 | 0.27 | 62.5 |
PT 2 | 0.51–2.31 | 0.94 | 0 | 0.00–0.05 | 0.02 | 25.0 | 0.00–0.75 | 0.27 | 62.5 |
PT 3 | 0.79–2.26 | 1.50 | 0 | 0.00–0.07 | 0.02 | 42.8 | 0.07–3.16 | 0.67 | 57.1 |
DS(IV) | |||||||||
WTP(IV) | 0.95–2.33 | 1.59 | 0 | 0.00–0.07 | 0.04 | 25 | 0.03–1.34 | 0.51 | 25 |
PT 1 | 0.80–2.25 | 1.26 | 0 | 0.00–0.07 | 0.05 | 12.5 | 0.06–1.39 | 0.71 | 12.5 |
PT 2 | 0.80–2.93 | 1.83 | 0 | 0.02–0.10 | 0.07 | 0.0 | 0.08–1.67 | 0.61 | 37.5 |
PT 3 | 0.83–1.40 | 1.01 | 0 | 0.00–0.08 | 0.04 | 28.6 | 0.06–1.16 | 0.51 | 28.6 |
Ryznar Index | Langelier Index | Larson-Skold Index | |||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
DS(I) | |||||||||
WTP(I) | 7.12 | 7.50 | 7.37 | −0.09 | 0.09 | −0.03 | 0.12 | 0.16 | 0.14 |
PT 1 | 6.93 | 7.18 | 7.07 | 0.07 | 0.18 | 0.13 | 0.13 | 0.16 | 0.14 |
PT 2 | 7.00 | 7.22 | 7.11 | 0.04 | 0.20 | 0.11 | 0.12 | 0.20 | 0.15 |
PT 3 | 6.97 | 7.18 | 7.18 | 0.07 | 0.16 | 0.10 | 0.12 | 0.18 | 0.14 |
DS(II) | |||||||||
WTP(II) | 7.18 | 7.27 | 7.23 | −0.04 | 0.04 | 0.00 | 0.16 | 0.20 | 0.18 |
PT 1 | 6.99 | 7.07 | 7.03 | 0.07 | 0.14 | 0.10 | 0.17 | 0.21 | 0.19 |
PT 2 | 6.83 | 6.99 | 6.92 | 0.12 | 0.26 | 0.18 | 0.17 | 0.21 | 0.19 |
PT 3 | 6.84 | 6.94 | 6.91 | 0.17 | 0.24 | 0.19 | 0.18 | 0.21 | 0.19 |
DS(III) | |||||||||
WTP(III) | 7.03 | 7.23 | 7.12 | 0.03 | 0.15 | 0.08 | 0.04 | 0.19 | 0.16 |
PT 1 | 6.65 | 6.99 | 6.81 | 0.17 | 0.47 | 0.33 | 0.17 | 0.22 | 0.19 |
PT 2 | 6.82 | 7.15 | 7.00 | 0.06 | 0.21 | 0.13 | 0.17 | 0.22 | 0.19 |
PT 3 | 6.59 | 6.76 | 6.66 | 0.31 | 0.51 | 0.41 | 0.17 | 0.21 | 0.19 |
DS(IV) | |||||||||
WTP(IV) | 6.78 | 7.09 | 6.95 | 0.06 | 0.29 | 0.15 | 0.07 | 0.1 | 0.08 |
PT 1 | 6.63 | 6.92 | 6.72 | 0.15 | 0.30 | 0.27 | 0.06 | 0.08 | 0.08 |
PT 2 | 6.68 | 6.92 | 6.79 | 0.16 | 0.30 | 0.21 | 0.07 | 0.1 | 0.08 |
PT 3 | 6.66 | 6.88 | 6.75 | 0.18 | 0.33 | 0.24 | 0.07 | 0.09 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domoń, A.; Wilczewska, W.; Papciak, D.; Kowalska, B. Analysis of Variability of Water Quality Indicators in the Municipality Water Supply System—A Case Study. Water 2024, 16, 3219. https://doi.org/10.3390/w16223219
Domoń A, Wilczewska W, Papciak D, Kowalska B. Analysis of Variability of Water Quality Indicators in the Municipality Water Supply System—A Case Study. Water. 2024; 16(22):3219. https://doi.org/10.3390/w16223219
Chicago/Turabian StyleDomoń, Andżelika, Weronika Wilczewska, Dorota Papciak, and Beata Kowalska. 2024. "Analysis of Variability of Water Quality Indicators in the Municipality Water Supply System—A Case Study" Water 16, no. 22: 3219. https://doi.org/10.3390/w16223219
APA StyleDomoń, A., Wilczewska, W., Papciak, D., & Kowalska, B. (2024). Analysis of Variability of Water Quality Indicators in the Municipality Water Supply System—A Case Study. Water, 16(22), 3219. https://doi.org/10.3390/w16223219