Habitat Assessment of Bocachico (Prochilodus magdalenae) in Ciénaga de Betancí, Colombia, Using a Habitat Suitability Index Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Atmospheric Data
2.4. Habitat Suitability Index (HSI)
2.5. Numerical Model
2.5.1. Hydrodynamics and Water Quality Modules
- Momentum equation in the direction:
- Momentum equation in the direction:
- Momentum equation in the direction:
2.5.2. Habitat Suitability Module
2.6. Model Configuration
2.6.1. Initial Conditions
2.6.2. Boundary Conditions and Forcings
2.7. Numeric Model Calibration
Goodness of Fit Tests
2.8. Calculation of Average Suitability Index
3. Results and Discussion
3.1. Suitability Curve Values
3.2. Calibration of the Hydrodynamic Module
3.3. Nutrient Transport Calibration Module
3.4. Simulation Results for Ciénaga de Betancí
3.4.1. Hydrodynamics in the Ciénaga de Betancí
3.4.2. Water Quality Results
3.4.3. Habitat Suitability Index of Hydrodinamic Parameters
3.4.4. Habitat Suitability of Water Quality Parameters
3.4.5. Average HSI of the Ciénaga de Betancí
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braddock, T.; Berntsen, L. Wetlands: An Introduction to Ecology, the Law, and Permitting, 2nd ed.; Government Institutes: Seattle, WA, USA, 2007. [Google Scholar]
- Cho, M.; Qi, J. Characterization of the impacts of hydro-dams on wetland inundations in Southeast Asia. Sci. Total Environ. 2023, 864, 160941. [Google Scholar] [CrossRef] [PubMed]
- Senhadji-Navarro, K.; Ruiz-Ochoa, M.; Rodríguez, J. Ru Estado ecológico de algunos humedales colombianos en los últimos 15 años: Una evaluación prospectiva. Colomb. For. 2017, 20, 181–191. [Google Scholar] [CrossRef]
- Convención de Ramsar sobre los Humedales. Perspectiva Mundial Sobre los Humedales: Estado de los humedales del mundo y de los servicios que prestan a las personas. Gland (Suiza). Conveción de Ramsar Sobre Los Humedales 2018, 88p. Available online: https://www.ramsar.org/sites/default/files/documents/library/gwo_s.pdf (accessed on 7 January 2022).
- Henao, S.; Carabalí, D.; González, L.; Marmolejo, L. Estudio comparado de los servicios ecosistémicos de los humedales Guarinó y Cauquita, en el Valle del Cauca (Colombia). Ambiente Desarro. 2018, 22. [Google Scholar] [CrossRef]
- Qu, Y.; Zeng, X.; Luo, C.; Zhang, H.; Ni, H. Prediction of wetland biodiversity pattern under the current land-use mode and wetland sustainable management in Sanjiang Plain, China. Ecol. Indic. 2023, 147, 109990. [Google Scholar] [CrossRef]
- Quintana, R. Humedales, biodiversidad y servicios ecosistémicos ¿Hacia dónde vamos? In Agua + Humedales, 1st ed.; UNSAM Edita, Ed.; Universidad Nacional de San Martín y Fundación Innovación Tecnológica (FUNINTEC): San Martin, Argentina, 2018. [Google Scholar]
- Torres, A.; Yances, A. Efectos Ambientales Ocasionados por la Reducción de la Superficie Inundable del Complejo Cenagoso del Bajo Sinú. Bachelor’s Thesis, Universidad de Cordoba, Cordoba, Colombia, 2016. [Google Scholar] [CrossRef]
- Londoño, D.; Villadiego, J.; Anaya, J.; Payares, P.; Hernández, Ó.; Pérez, S. Análisis integrado del territorio: Caso Ciénaga de Betancí, municipio de Montería. In Alternativas de sostenibilidad ambiental para comunidades en el departamento de Córdoba, 1st ed.; Editorial Universidad Pontificia Bolivariana: Medellín, Colombia, 2020; pp. 52–69. [Google Scholar] [CrossRef]
- Atencio, V.; Kerguelén, E.; Naar, E.; Petro, R. Desempeño reproductivo del bocachico Prochilodus magdalenae inducido dos veces en un mismo año. Rev. MVZ Córdoba 2013, 18, 3304–3310. [Google Scholar] [CrossRef]
- Ayazo, J.; Pertúz, V.; Espinosa, J.; Jimenez, C.; Atencio, V.; Prieto, M. Desempeño de bocachico Prochilodus magdalenae en sistemas intensivos de producción con tecnología biofloc. Biotecnol. Sect. Agropecu. Agroindustrial 2018, 16, 91. [Google Scholar] [CrossRef]
- de la Rosa, J.; Fontalvo, P.; Orozco-Berdugo, G.; Narváez-Barandica, J. Caracterización genética de reproductores de Prochilodus magdalenae (Pisces: Prochilodontidae) usados en programas de reproblamiento en Colombia. J. Basic Appl. Genet. 2020, 31, 53–63. [Google Scholar] [CrossRef]
- Maddock, I. Environmental Flows: Habitat Modeling. In The Wetland Book; Springer: Dordrecht, The Netherlands, 2018; pp. 1829–1834. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Song, J.; Wang, Q.; Liu, H.; Tang, X. Habitat suitability index model of the sea cucumber Apostichopus japonicus (Selenka): A case study of Shandong Peninsula, China. Mar. Pollut. Bull. 2017, 122, 65–76. [Google Scholar] [CrossRef]
- Cardona, W. Curvas De Idoneidad De Hábitat Para Macroinvertebrados Bentónicos: Una Herramienta Para La Estimación de Caudales Ambientales. Master’s Thesis, Universidad del Valle, Cali, Colombia, 2012. Available online: https://hdl.handle.net/10893/7651 (accessed on 23 March 2022).
- Alvarez-Mieles, G.; Gerald, C.; Arthur, E. Spatial and Temporal Variations′ of Habitat Suitability for Fish: A Case Study in Abras de Mantequilla Wetland, Ecuador. In Spatiotemporal Analysis of Extreme Hydrological Events; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–141. [Google Scholar] [CrossRef]
- Motta, Á. Modelación de Idoneidad de Hábitat de la Comunidad y Grupos Funcionales de Macroinvertebrados. Master’s Thesis, Pontificia Universidad Javeriana, Bogota, Colombia, 2018. [Google Scholar] [CrossRef]
- Collier, J.; Chiotti, J.; Boase, J.; Mayer, C.; Vandergoot, C.; Bossenbroek, J. Assessing habitat for lake sturgeon (Acipenser fulvescens) reintroduction to the Maumee River, Ohio using habitat suitability index models. J. Great Lakes Res. 2022, 48, 219–228. [Google Scholar] [CrossRef]
- Muhammed, K.; Anandhi, A.; Chen, G. Comparing Methods for Estimating Habitat Suitability. Land 2022, 11, 1754. [Google Scholar] [CrossRef]
- Suleman, S.; Khan, W.; Anjum, K.; Shehzad, W.; Hashmi, S. Habitat Suitability Index (HSI) Of Punjab Urial (Ovis Vegnei Punjabiensis) In Pakistan. J. Anim. Plant Sci. 2020, 30, 229–238. [Google Scholar] [CrossRef]
- Erftemeijer, P.; Gils, J.; Fernandes, M.; Daly, R.; Van Der Heijden, L.; Herman, P. Habitat suitability modelling to improve understanding of seagrass loss and recovery and to guide decisions in relation to coastal discharge. Mar. Pollut. Bull. 2023, 186, 114370. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M. Evaluación de la Hidrodinámica del sector sur del Humedal Gualí. Bachelor’s Thesis, Universidad Antonio Nariño, Cundinamarca, Colombia, 2020. Available online: http://repositorio.uan.edu.co/handle/123456789/2127 (accessed on 15 October 2022).
- Veerapaga, N.; Azhikodan, G.; Shintani, T.; Iwamoto, N.; Yokoyama, K. A three-dimensional environmental hydrodynamic model, Fantom-Refined: Validation and application for saltwater intrusion in a meso-macrotidal estuary. Ocean. Model. 2019, 141, 101425. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, Z.; Yang, Z. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecol. Model. 2010, 221, 864–875. [Google Scholar] [CrossRef]
- Wang, F.; Lin, B. Modelling habitat suitability for fish in the fluvial and lacustrine regions of a new Eco-City. Ecol. Model. 2013, 267, 115–126. [Google Scholar] [CrossRef]
- Yang, L.; Hou, J.; Cheng, L.; Wang, P.; Pan, Z.; Wang, T.; Ma, Y.; Xujun, G.; Jixin, S.; Liu, N. Application of Habitat Suitability Model Coupling with High-precision Hydrodynamic Processes. Ecol. Model. 2021, 462, 109792. [Google Scholar] [CrossRef]
- CVS. Plan de Gestión Ambiental Regional 2020–2031. Corporación Autónoma Regional de Los Valles Del Sinú y Del San Jorge. 2020. Available online: https://cvs.gov.co/planes/#244-949-wpfd-plan-de-gestion-ambiental-regional (accessed on 31 July 2022).
- Salas Padilla, E.S. Caracterización de los Ecosistemas Fundamentales y los Servicios Ecológicos y Ecosistémicos que proveen a la ciudad de Montería. In Repositorio Institucional Universidad de Córdoba; Universidad de Córdoba: Córdoba, Colombia, 2019. [Google Scholar]
- CVS. Plan de Acción Institucional 2020–2023. Corporación Autónoma Regional de Los Valles Del Sinú y Del San Jorge. 2020. Available online: https://cvs.gov.co/planes/#244-947-wpfd-plan-de-accion (accessed on 16 April 2022).
- Cárdenas, C. Análisis de la Dinámica Espacial de la Ciénaga de Betancí durante los años 1985, 2001, 2015 y 2020 mediante imágenes satelitales Landsat. J. Chem. Inf. Model. 2020, 53, 23. [Google Scholar]
- Torres-Bejarano, F.; García-Gallego, J.; Salcedo-salgado, J. Numerical modeling of nutrient transport to assess the agricultural impact on the trophic state of reservoirs. Int. Soil Water Conserv. Res. 2022, 11, 197–212. [Google Scholar] [CrossRef]
- Gobernación de Córdoba. Informe Final de Auditoría Gubernamental Con Enfoque Integral Modalidad Especial, Linea Ambiental “Desarrollo Sostenible Del Departamento De Córdoba”. Montería: 2011. Available online: https://ciudadano.contraloriadecordoba.gov.co/apc-aa-files/c3e760fa771a41089743964be841dc9f/INFORME_FINAL_ALCALDIA_LORICA.pdf (accessed on 7 March 2022).
- United States Fish Wildlife Service. Standards for the Development of Habitat Suitability Index Models; Division of Ecological Service: Washington, DC, USA, 1981. [Google Scholar]
- Zohmann, M.; Pennerstorfer, J.; Nopp-Mayr, U. Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecol. Model. 2013, 254, 22–32. [Google Scholar] [CrossRef]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; Special Report in Applied Marine Science and Ocean Engineering. No. 317; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 1992. [Google Scholar] [CrossRef]
- Jeong, S.; Yeon, K.; Hur, Y.; Oh, K. Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River. J. Environ. Sci. 2010, 22, 934–939. [Google Scholar] [CrossRef]
- EPA. Environmental Fluid Dynamics Code (EFDC). Environmental Protection Agency. 2013. Available online: https://www.epa.gov/ceam/environmental-fluid-dynamics-code-efdc (accessed on 4 January 2022).
- Mathis, T.J.; Lee, S.T.; Craig, P.M.; Lam, N.T.; Scandrett, K.; Mishra, A.; Arifin, R.R.; Jung, J.Y. Estuarine Salinity Intrusion and Implications for Aquatic Habitat: A Case Study of the Lower St. Johns River Estuary, Florida. In World Environmental and Water Resources Congress 2019: Hydraulics, Waterways, and Water Distribution Systems Analysis; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 13–25. [Google Scholar] [CrossRef]
- Torres-Bejarano, F.; González-Martínez, J.; Rodríguez-Pérez, J.; Rodríguez-Cuevas, C.; Mathis, T.J.; Tran, D.K. Characterization of salt wedge intrusion process in a geographically complex microtidal deltaic estuarine system. J. S. Am. Earth Sci. 2023, 131, 104646. [Google Scholar] [CrossRef]
- Hernández, J.; Martínez, D. Modelación Hidrodinámica Y de la Calidad Del Agua Para la Evaluación Ambiental de Vertimientos Generados a la Ciénaga Mesolandia, Atlántico—Colombia [Tesis de Grado Pregrado, Universidad de la Costa]. 2016. Available online: https://repositorio.cuc.edu.co/handle/11323/644 (accessed on 28 September 2022).
- Villota-López, C.; Rodríguez-Cuevas, C.; Torres-Bejarano, F.; Cisneros-Pérez, R.; Cisneros-Almazán, R.; Couder-Castañeda, C. Applying EFDC Explorer model in the Gallinas River, Mexico to estimate its assimilation capacity for water quality protection. Sci. Rep. 2021, 11, 13023. [Google Scholar] [CrossRef] [PubMed]
- Torres-Bejarano, F.; Verbel-Escobar, M.; Atencia-Osorio, M. Water quality model-based methodology to assess assimilative capacity of waste-water discharges in rivers. Glob. J. Environ. Sci. Manag. 2023, 8, 449–472. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vu, M.T.; Zhang, C. Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam. J. Mar. Sci. Eng. 2021, 9, 1258. [Google Scholar] [CrossRef]
- Pérez-Torres, J. Un índice para la evaluación del hábitat de Agouti taczanowskii (Rodentia: Agoutidae) en áreas de bosque andino nublado. Univ. Sci. 2002, 7, 56–60. [Google Scholar]
- Delfín-Alfonso, C.; Gallina, S.; López-González, C. Modelos de Idoneidad del hábitat (HSI) para el venado cola blanca. In Monitoreo y Manejo del Venado Cola Blanca, Conceptos y Métodos; Instituto de Ecología, A.C. y Benemérita Universidad Autónoma de Puebla: Ciudad de México, Mexico, 2014; pp. 121–136. [Google Scholar]
- De la Hoz, A.; Jimenez, J. Evaluación de la Calidad de Agua en El Embalse El Guájaro Para Identificar Áreas Óptimas de Producción Acuícola, Mediante la Implementación de un Sistema de Información Geográfica. Bachelor’s Thesis, Universidad de la Costa, Barranquilla, Colombia, 2017. [Google Scholar]
- Flórez, F. Observaciones ecológicas sobre los peces Bocachico real (Prochilodus mariae Eigenmann 1922) y el Bocachico cardumero (Suprasinelepichthys laticeps Valenciennes 1849) del sistema del rio metica y algunos datos comparativos del Bocachico (Prochilodus r). Acta Biológica Colomb. 1986, 1, 9–33. [Google Scholar]
- Atencio, V.J. Producción de alevinos de especies nativas. Rev. MVZ Córdoba 2001, 6, 9–14. [Google Scholar] [CrossRef]
- Cabrales, S. Evaluación de Etilenglicol y Leche en Polvo Descremada Como Crioprotectores en la Criopreservación de Semen de Bocachico S Magdalenae. Master’s Thesis, Universidad de Córdoba, Cordoba, Colombia, 2020. [Google Scholar]
- Daza, V.; Landines, M. Fundamentos de Acuicultura Continental, 3rd ed.; Autoridad Nacional de Acuicultura y Pesca (AUNAP): Bogotá, Colombia, 2019. [Google Scholar]
- Rodríguez, H.; Daza, P.V.; Carrillo, M. Fundamentos de Acuicultura Continental, 2nd ed.; Instituto Nacional de Pesca y Acuicultura (INPA): Ciudad de México, Mexico, 2001. [Google Scholar]
- CCI. Sistema de información de precios y mercados para la producción acuícola y pesquera. In Boletín Semanal 20 al 26 de Mayo de 2010 (Issue 21); Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2010; Volume 6. [Google Scholar]
- Roldán, G.; Ramírez, J. Fundamentos de Limnología Neotropical, 2nd ed.; Editorial Universidad de Antioquia: Medellín, Colombia, 2008. [Google Scholar]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Liefveld, W.M.; Schulze, F. A river habitat simulation model to quantify ecological effects of low discharges on the River Meuse (The Netherlands, Belgium). Large Rivers 2003, 15, 465–481. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Aarestrup, K.; Riis TM, O.; Jepsen, N.; Koed, A. Shining a light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers, and its implications for management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 1345–1349. [Google Scholar] [CrossRef]
- McLaren, J.S.; van Kirk, R.W.; Budyc, P.; Brothers, S. The scale-dependent role of submerged macrophytes as drift-feeding lotic fish habitat. Can. J. Fish. Aquat. Sci. 2023, 80, 1533–1546. [Google Scholar] [CrossRef]
- Lightbody, A.F.; Avener, M.E.; Nepf, H.M. Observations of short-circuiting flow paths within a free-surface wetland in Augusta, Georgia, U.S.A. Limnol. Oceanogr. 2008, 53, 1040–1053. [Google Scholar] [CrossRef]
- Mosley, L.M.; Zammit, B.; Leyden, E.; Heneker, T.M.; Hipsey, M.R.; Skinner, D.; Aldridge, K.T. The Impact of Extreme Low Flows on the Water Quality of the Lower Murray River and Lakes (South Australia). Water Resour. Manag. 2012, 26, 3923–3946. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A. Water-quality issues in Ramsar wetlands. Mar. Freshw. Res. 2014, 65, 604–611. [Google Scholar] [CrossRef]
- CVS. Plan de Gestión Ambiental Regional—PGAR. Actualización 2008–2019; Corporación Autónoma Regional de Los Valles Del Sinú y Del San Jorge: Montería, Colombia, 2008. [Google Scholar]
- Cloern, J.E. Habitat connectivity and ecosystem productivity: Implications from a simple model. Am. Nat. 2007, 169, E21–E33. [Google Scholar] [CrossRef]
- Ali, M.; El-Feky, A.; Khouraiba, H.; El-Sherif, M. Effect of Water Depth on Growth Performance and Survival Rate of Mixed Sex Nile Tilapia Fingerlings and Adults. Egypt. J. Anim. Prod. 2013, 50, 194–199. [Google Scholar] [CrossRef]
- Md Hosen, H.; Sarker, K.; Chhanda, M.; Gupta, N. Effects of water depth on growth performance of Indian major carps at a poly culture system in Bangladesh. Int. J. Aquac. Fish. Sci. 2019, 5, 014–021. [Google Scholar] [CrossRef]
- Nakazono, A. Fate of tropical reef fish juveniles that settle to a temperate habitat. Fish. Sci. 2002, 68, 127–130. [Google Scholar] [CrossRef]
- Figueira, W.F.; Biro, P.; Booth, D.J.; Valenzuela, V.C. Performance of tropical fish recruiting to temperate habitats: Role of ambient temperature and implications of climate change. Mar. Ecol. Prog. Ser. 2009, 384, 231–239. [Google Scholar] [CrossRef]
- Antonetti, M.; Hoppler, L.; Tonolla, D.; Vanzo, D.; Schmid, M.; Doering, M. Integrating two-dimensional water temperature simulations into a fish habitat model to improve hydro- and thermopeaking impact assessment. River Res. Appl. 2023, 39, 501–521. [Google Scholar] [CrossRef]
- Sandersfeld, T.; Mark, F.C.; Knust, R. Temperature-dependent metabolism in Antarctic fish: Do habitat temperature conditions affect thermal tolerance ranges? Polar Biol. 2017, 40, 141–149. [Google Scholar] [CrossRef]
- Kramer, D.L. Dissolved oxygen and fish behavior. Environ. Biol. Fishes 1987, 18, 81–92. [Google Scholar] [CrossRef]
- Khabusi, S.P.; Huang, Y.P. A Deep Learning Approach to Predict Dissolved Oxygen in Aquaculture. In Proceedings of the International Conference on Advanced Robotics and Intelligent Systems, ARIS, Taipei, Taiwan, 24–27 August 2022. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M.; Docheshmeh Gorgij, A.R. Dissolved oxygen prediction using a new ensemble method. Environ. Sci. Pollut. Res. 2020, 27, 9589–9603. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Liang, S.; Li, H.; Yan, B. Effects of biodiversity on functional stability of freshwater wetlands: A systematic review. Front. Microbiol. 2024, 15, 1397683. [Google Scholar] [CrossRef]
- Rabalais, N.N. Nitrogen in Aquatic Ecosystems. Ambio 2002, 31, 102–112. [Google Scholar] [CrossRef]
- Fialho, A.P.; Oliveira, L.G.; Tejerina-Garro, F.L.; De Mérona, B. Fish-habitat relationship in a tropical river under anthropogenic influences. Hydrobiologia 2008, 598, 315–324. [Google Scholar] [CrossRef]
- Rolls, R.J.; Leigh, C.; Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 2012, 31, 1163–1186. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Jacob, R.M.; Silva, R.R.; Lima, F.C.; Ferreira, D.C.; Ferreira, K.M.; Mariguela, T.C.; Pereira, L.H.; Oliveira, C. Distributions and phylogeographic data of rheophilic freshwater fishes provide evidence on the geographic extension of a central-brazilian amazonian palaeoplateau in the area of the present day Pantanal Wetland. Neotrop. Ichthyol. 2013, 11, 319–326. [Google Scholar] [CrossRef]
- Dixit, A.; Siddaiah, N.S.; Chauhan, J.S.; Khan, W.U. Water Quality Assessment in Urban Wetlands and Suitability for Fish Habitat: A Case Study. Pollution 2021, 7, 457–467. [Google Scholar] [CrossRef]
- Craig, J.K.; Crowder, L.B. Factors Influencing Habitat Selection in Fishes with a Review of Marsh Ecosystems. In Concepts and Controversies in Tidal Marsh Ecology; Springer: Berlin/Heidelberg, Germany, 2002; pp. 241–266. [Google Scholar] [CrossRef]
- Fernandes, I.M.; Machado, F.A.; Penha, J. Spatial pattern of a fish assemblage in a seasonal tropical wetland: Effects of habitat, herbaceous plant biomass, water depth, and distance from species sources. Neotrop. Ichthyol. 2010, 8, 289–298. [Google Scholar] [CrossRef]
- Alves, D.C.; Minte-Vera, C.V.; Agostinho, A.A.; Okada, E.K.; Vasconcelos, L.P. Hydrological attributes and rheophilic freshwater fish: Stock assessment. Rev. Fish Biol. Fish. 2013, 23, 375–394. [Google Scholar] [CrossRef]
- Cherry, J.A.; Ward, A.K.; Ward, G.M. The dynamic nature of land-water interfaces: Changes in structure and productivity along a water depth gradient in the Talladega Wetland Ecosystem. Int. Ver. Theor. Angew. Limnol. Verhandlungen 2009, 30, 977–980. [Google Scholar] [CrossRef]
- Reynolds, W.W.; Casterlin, M.E. The Role of Temperature in the Environmental Physiology of Fishes. In Environmental Physiology of Fishes; Springer: Boston, MA, USA, 1980; pp. 497–518. [Google Scholar] [CrossRef]
- Voicea, I.; Dumitru, D.; Vlăduț, V.; Petre, A.; Nenciu, F.; Moga, C.I. The quality of the aquatic environment in fishponds. Ann. Univ. Craiova Agric. Mont. Cadestre Ser. 2021, 51, 628–639. [Google Scholar]
- Volkoff, H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, X.; Ding, W. Prediction Model of Dissolved Oxygen Based on FOA-LSSVR. In Proceedings of the 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 9819–9823. [Google Scholar] [CrossRef]
- Lorenzo, A.R.; Dula, A.Y.; Valeroso, N.A.; Munda, J.D.; Supang, B.N.; Padilla, M.V.; Madrigal, G.A.; Amado, T.M.; Tolentino, L.K. Dissolved Oxygen (DO) Meter Hydrological Modelling Using Predictive Algorithms. In Proceedings of the IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM, Laoag, Philippines, 29 November–1 December 2019. [Google Scholar] [CrossRef]
- Banerjee, A.; Chakrabarty, M.; Rakshit, N.; Bhowmick, A.R.; Ray, S. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. Ecol. Indic. 2019, 100, 99–117. [Google Scholar] [CrossRef]
- Boyd, C. General relationship between water quality and aquaculture performance in ponds. In Fish Diseases: Prevention and Control Strategies; Academic Press: Cambridge, MA, USA, 2017; pp. 147–166. [Google Scholar] [CrossRef]
- Thorarensen, H.; Gústavsson, A.; Mallya, Y.; Gunnarsson, S.; Árnason, J. The effect of oxygen saturation on the growth and feed conversion of Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 2010, 309, 96–102. [Google Scholar] [CrossRef]
- Camargo, J.; Alonso, A. Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: Problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Rev. Ecosistemas 2007, 16, 98–110. [Google Scholar]
- Cárdenas, G.; Sánchez, I. Nitrógeno en aguas residuales: Orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ. Salud 2013, 15, 72–88. [Google Scholar]
- Ferat, M. Efecto de las Escorrentías Agropecuarias en la Calidad del Agua del Río Usumacinta, Tabasco. Master’s Thesis, Instituto Tecnológico de Boca del Río, Boca del Rio, Mexico, 2018. [Google Scholar] [CrossRef]
- Ferat, M.; Galaviz-Villa, I.; Partida-Sedas, S. Evaluación de nitrógeno y fósforo total en escorrentías agropecuarias en la cuenca baja del río Usumacinta (Tabasco, México). Ecosistemas 2020, 29, 1879. [Google Scholar] [CrossRef]
- Arrieta, P.; Trujillo, J.; Almario, Á. Analysis of environmental aspects generated by livestock practices in the area of influence of the Betancí swamp in the municipality of Montería. Espacios 2018, 39, 44. [Google Scholar]
- Chevallier, S.; Toribio, M. Volatilización del Amoníaco. Información Técnica de Trigo; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela: Rafaela, Argentina, 2006; p. 105. [Google Scholar]
- Tan, J.; Fu, J.S.; Seinfeld, J.H. Ammonia emission abatement does not fully control reduced forms of nitrogen deposition. Proc. Natl. Acad. Sci. USA 2020, 117, 9771–9775. [Google Scholar] [CrossRef] [PubMed]
- French, E.; Kozlowski, J.A.; Bollmann, A. Competition between Ammonia-Oxidizing Archaea and Bacteria from Freshwater Environments. Appl. Environ. Microbiol. 2021, 87, e01038-21. [Google Scholar] [CrossRef] [PubMed]
HSI Range | Interpretation |
---|---|
0 | Unsuitable conditions |
0.01–0.25 | Inadequate suitability conditions |
0.25–0.5 | Low suitability conditions |
0.5–0.75 | Medium suitability conditions |
0.75–0.99 | Acceptable suitability conditions |
1 | Ideal conditions |
Parameter | References | Optimal Range | Stress Range | Lethal Range |
---|---|---|---|---|
Temperature (°C) | [47,48,49] | 26–30 | <22 | >37 |
Dissolved oxygen (mg/L) | [50] | 5–CSat * | 1.5–5 | <1.5–>CSat * |
Ammonia (mg/L) | [50,51,52] | 0–0.1 | 0.1–0.3 | >1 |
Bathymetry or water depth (m) | [50]. | 1–1.5 | 0.5–1 | 2–2.5 |
Velocity (m s−1) | [53] | 0.10–0.25 | <0.10 0.25–0.50 | 0.50–1 |
Suitability | Parameters | ||||
---|---|---|---|---|---|
OD (mg/L) | T (°C) | NH4 (mg/L) | Depth (m) | Velocity (m s−1) | |
0.0 | >CSat * | 37.0–36.4 | >1.0 | 0.0 | 0.49–0.47 |
0.0–0.2 | 4.8–5.0 | ||||
0.1 | 0.3–0.7 | 36.3–35.7 | 1.0 | 0.1 | 0.46–0.45 |
4.7–4.4 | |||||
0.2 | 0.8–1.3 | 35.6–35.0 | 0.9 | 0.2 | 0.44–0.42 |
4.3–4.0 | |||||
0.3 | 1.4–1.8 | 34.9–34.3 | 0.8 | 0.3 | 0.41–0.40 |
3.9–3.7 | |||||
0.4 | 1.9–2.3 | 34.2–33.6 | 0.7 | 0.4 | 0.39–0.38 |
3.6–3.3 | |||||
0.5 | 2.4–2.8 | 33.5–32.9 | 0.6 | 0.5 | 0.37–0.35 |
21.9–22.6 | 3.2–3.0 | 0.01–0.02 | |||
0.6 | 2.9–3.4 | 32.8–33.2 | 0.5 | 0.6 | 0.34–0.33 |
22.7–23.4 | 2.9–2.6 | 0.03–0.04 | |||
0.7 | 3.5–3.9 | 32.1–31.5 | 0.4 | 0.7 | 0.32–0.30 |
23.5–24.3 | 2.5–2.0 | 0.05–0.06 | |||
0.8 | 4.0–4.4 | 31.4–30.8 | 0.3 | 0.8 | 0.29–0.28 |
24.5–25.1 | 1.9–1.8 | 0.07–0.08 | |||
0.9 | 4.5–4.9 | 30.7–30.1 | 0.2 | 0.9 | 0.27–0.26 |
25.2–25.9 | 1.7–1.6 | 0.09 | |||
1.0 | 5.0–Csat * | 26.0–30.0 | 0.0–0.1 | 1.0–1.5 | 0.10–0.25 |
Parameter | Equation |
---|---|
HSI OD (mg/L) | |
HSI T (°C) | |
HSI NH4 (mg/L) | |
HSI Depth (m) | |
HSI Velocity (m/s) | |
Statistic/Parameter | NH4 (mg/L) | NO3 (mg/L) | PO4 (mg/L) | TN (mg/L) | TSS (mg/L) |
---|---|---|---|---|---|
RMSE | 0.045 | 0.026 | 0.011 | 0.089 | 6.993 |
MAE | 0.039 | 0.022 | 0.007 | 0.081 | 5.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vellojín-Muñoz, K.; Lorduy-González, J.; Torres-Bejarano, F.; Campo-Daza, G.; Torregroza-Espinosa, A.C. Habitat Assessment of Bocachico (Prochilodus magdalenae) in Ciénaga de Betancí, Colombia, Using a Habitat Suitability Index Model. Water 2024, 16, 3312. https://doi.org/10.3390/w16223312
Vellojín-Muñoz K, Lorduy-González J, Torres-Bejarano F, Campo-Daza G, Torregroza-Espinosa AC. Habitat Assessment of Bocachico (Prochilodus magdalenae) in Ciénaga de Betancí, Colombia, Using a Habitat Suitability Index Model. Water. 2024; 16(22):3312. https://doi.org/10.3390/w16223312
Chicago/Turabian StyleVellojín-Muñoz, Karol, José Lorduy-González, Franklin Torres-Bejarano, Gabriel Campo-Daza, and Ana Carolina Torregroza-Espinosa. 2024. "Habitat Assessment of Bocachico (Prochilodus magdalenae) in Ciénaga de Betancí, Colombia, Using a Habitat Suitability Index Model" Water 16, no. 22: 3312. https://doi.org/10.3390/w16223312
APA StyleVellojín-Muñoz, K., Lorduy-González, J., Torres-Bejarano, F., Campo-Daza, G., & Torregroza-Espinosa, A. C. (2024). Habitat Assessment of Bocachico (Prochilodus magdalenae) in Ciénaga de Betancí, Colombia, Using a Habitat Suitability Index Model. Water, 16(22), 3312. https://doi.org/10.3390/w16223312