Quartile Regression and Ensemble Models for Extreme Events of Multi-Time Step-Ahead Monthly Reservoir Inflow Forecasting
Abstract
:1. Introduction
2. Study Area, Data Collection, and Brief Overview of Theories Used
2.1. Study Area
2.2. Data Collection
2.3. Brief Overview of Theories Used
2.3.1. Quantile Regression
2.3.2. Tree-Based Machine Learning Techniques
Random Forest (RF)
eXtreme Gradient Boosting (XGBoost)
2.3.3. Long Short-Term Memory Networks (LSTMs)
2.4. Multiple Linear Regression (MLR)
3. Research Methodology
3.1. Research Framework
3.2. Experimental Setup
3.3. Statistical Performance Measures
3.3.1. Mean Absolute Error (MAE)
3.3.2. Root Mean Square Error (RMSE)
3.3.3. Centered Root Mean Square Error (CRMSE)
3.3.4. The Relative Peak Error (PE)
3.3.5. Normalized Nash–Sutcliffe Efficiency (NNSE)
3.3.6. Normalized Score
3.3.7. Correlation Coefficient (r)
3.3.8. Augmented Dickey–Fuller Test (ADF)
4. Results and Discussion
4.1. Isolating Extreme and Normal Events Using Quantile Regression
4.2. Developing Reservoir Inflow Forecasting Models Under Extreme Events
4.3. Future Works
5. Conclusions
- Using quantile regression (QR) to isolate extreme and normal events significantly improved reservoir inflow forecasting performance compared to developing a machine learning model with the entire dataset, except for the T + 9 lead time. Additionally, the study found that using QR-75 to isolate the dataset outperformed QR-80 in three of the four lead times.
- Among the four lead times, hybrid models demonstrated improved forecasting performance, with XG-MLR-75 performing best at T + 3, RF-XG-80 at T + 6, and XG-RF-75 at T + 12. However, at the T + 6 lead time, XG outperformed all other 15 machine learning models
- Another important finding of this research is the uneven decline in prediction accuracy as lead time increases. Specifically, the model performed best at T + 9, followed by T + 3, T + 12, and T + 6 in that order. This pattern is influenced by factors such as model characteristics, error propagation, temporal variability, data dynamics, and seasonal effects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Intergovernmental Panel on Climate Change. 2021. Available online: www.ipcc.ch (accessed on 18 April 2024).
- Jha, M.K. Natural and anthropogenic disasters: An overview. In Natural and Anthropogenic Disasters: Vulnerability, Preparedness and Mitigation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–16. [Google Scholar] [CrossRef]
- Ding, D.; Zhang, M.; Pan, X.; Yang, M.; He, X. Modeling extreme events in time series prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Volume 1, pp. 1114–1122. [Google Scholar] [CrossRef]
- Kennedy, A.C.; Lindsey, R. What s the Difference Between Global Warming and Climate Change? ClimateWatch Magazine. 2015. Available online: https://climate.nasa.gov/faq/12/whats-the-difference-between-climate-change-and-global-warming/ (accessed on 25 October 2019).
- Vicente-Serrano, S.M.; Zabalza-Martínez, J.; Borràs, G.; López-Moreno, J.; Pla, E.; Pascual, D.; Savé, R.; Biel, C.; Funes, I.; Azorin-Molina, C.; et al. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. J. Hydrol. Reg. Stud. 2017, 12, 13–32. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, P.; Wang, C.; Qian, J.; Hou, J. Combined Monthly Inflow Forecasting and Multiobjective Ecological Reservoir Operations Model: Case Study of the Three Gorges Reservoir. J. Water Resour. Plan. Manag. 2017, 143, 05017004. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217+1161. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Van Lanen, H.A.J. Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resour. Res. 2013, 49, 1483–1502. [Google Scholar] [CrossRef]
- Wheater, H.S. Water in a Changing World. 2000. Available online: https://www.worldscientific.com/doi/abs/10.1142/9781848160682_0002 (accessed on 17 February 2024).
- Office of the National Economic and Social Development Board. The Twelfth National Economic and Social. Office of the National Economic and Social Development Board Office of the Prime Minister Bangkok, Thailand. pp. 1–30. 2017. Available online: https://www.nesdc.go.th/ewt_dl_link.php?nid=9640 (accessed on 10 October 2024).
- Tongsiri, J.; Kangrang, A. Prediction of Future Inflow under Hydrological Variation Characteristics and Improvement of Nam Oon Reservoir Rule Curve using Genetic Algorithms Technique. Mahasarakham Univ. J. Sci. Technol. 2018, 37, 775–788. [Google Scholar]
- Kim, T.; Shin, J.Y.; Kim, H.; Kim, S.; Heo, J.H. The use of large-scale climate indices in monthly reservoir inflow forecasting and its application on time series and artificial intelligence models. Water 2019, 11, 374. [Google Scholar] [CrossRef]
- Othman, F.; Naseri, M. Reservoir inflow forecasting using artificial neural network. Int. J. Phys. Sci. 2011, 6, 434–440. [Google Scholar]
- Razavi, S.; Araghinejad, S. Reservoir inflow modeling using temporal neural networks with forgetting factor approach. Water Resour. Manag. 2009, 23, 39–55. [Google Scholar] [CrossRef]
- Chibanga, R.; Berlamont, J.; Vandewalle, J. Modelling and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin. Hydrol. Sci. J. 2003, 48, 363–379. [Google Scholar] [CrossRef]
- Chiamsathit, C.; Adeloye, A.J.; Bankaru-Swamy, S. Inflow forecasting using artificial neural networks for reservoir operation. Proc. Int. Assoc. Hydrol. Sci. 2016, 373, 209–214. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.; Dai, X.; Zhang, Y. Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang Lake in China. Hydrol. Res. 2016, 47, 69–83. [Google Scholar] [CrossRef]
- Ivanciuc, O. Applications of Support Vector Machines in Chemistry. Rev. Comput. Chem. 2007, 23, 291–400. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Bee, E. Water Resource Systems Planning and Analysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Vadiati, M.; Yami, Z.R.; Eskandari, E.; Nakhaei, M.; Kisi, O. Application of artificial intelligence models for prediction of groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environ. Monit. Assess. 2022, 194, 619. [Google Scholar] [CrossRef] [PubMed]
- Samani, S.; Vadiati, M.; Azizi, F.; Zamani, E.; Kisi, O. Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components. Water Resour. Manag. 2022, 36, 3627–3647. [Google Scholar] [CrossRef]
- Ditthakit, P.; Pinthong, S.; Salaeh, N.; Binnui, F.; Khwanchum, L.; Pham, Q.B. Using machine learning methods for supporting GR2M model in runoff estimation in an ungauged basin. Sci. Rep. 2021, 11, 19955. [Google Scholar] [CrossRef]
- Lin, G.F.; Chen, G.R.; Huang, P.Y. Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting. Adv. Water Resour. 2010, 33, 887–898. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.; Jung, I.; Yoon, J. Monthly reservoir inflow forecasting for dry period using teleconnection indices: A statistical ensemble approach. Appl. Sci. 2020, 10, 3470. [Google Scholar] [CrossRef]
- Weekaew, J.; Ditthakit, P.; Kittiphattanabawon, N. Reservoir Inflow Time Series Forecasting Using Regression Model with Climate Indices. Recent Adv. Inf. Commun. Technol. 2021, 251, 127–136. [Google Scholar]
- Alquraish, M.M.; Abuhasel, K.A.; Alqahtani, A.S.; Khadr, M. A comparative analysis of hidden markov model, hybrid support vector machines, and hybrid artificial neural fuzzy inference system in reservoir inflow forecasting (Case study: The king fahd dam, saudi arabia). Water 2021, 13, 1236. [Google Scholar] [CrossRef]
- Makridakis, S. Time series prediction: Forecasting the future and understanding the past. Int. J. Forecast. 1994, 10, 463–466. [Google Scholar] [CrossRef]
- Cheng, C.-T.; Feng, Z.-K.; Niu, W.-J.; Liao, S.-L. Heuristic Methods for Reservoir Monthly Inflow Forecasting: A Case Study of Xinfengjiang Reservoir in Pearl River, China. Water 2015, 7, 4477–4495. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Z.; Xie, J.; Li, C. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 2016, 532, 193–206. [Google Scholar] [CrossRef]
- Weekaew, J.; Ditthakit, P.; Pham, Q.B.; Kittiphattanabawon, N.; Linh, N.T.T. Comparative Study of Coupling Models of Feature Selection Methods and Machine Learning Techniques for Predicting Monthly Reservoir Inflow. Water 2022, 14, 4029. [Google Scholar] [CrossRef]
- Luo, X.; Liu, P.; Dong, Q.; Zhang, Y.; Xie, K.; Han, D. Exploring the role of the long short-term memory model in improving multi-step ahead reservoir inflow forecasting. J. Flood Risk Manag. 2022, 16, e12854. [Google Scholar] [CrossRef]
- Liao, S.; Liu, Z.; Liu, B.; Cheng, C.; Jin, X.; Zhao, Z. Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees. Hydrol. Earth Syst. Sci. 2020, 24, 2343–2363. [Google Scholar] [CrossRef]
- Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 2021, 593, 125932. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Lin, Y.; Jin, J.; Liu, W.; An, X. Reservoir inflow predicting model based on machine learning algorithm via multi-model fusion: A case study of Jinshuitan river basin. IET Cyber-Systems Robot. 2021, 3, 265–277. [Google Scholar] [CrossRef]
- Yang, S.C.; Yang, T.H. Uncertainty Assessment: Reservoir Inflow Forecasting with Ensemble Precipitation Forecasts and HEC-HMS. Adv. Meteorol. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Amnatsan, S.; Yoshikawa, S.; Kanae, S. Improved forecasting of extreme monthly reservoir inflow using an analogue-based forecasting method: A case study of the Sirikit Dam in Thailand. Water 2018, 10, 1614. [Google Scholar] [CrossRef]
- Huang, I.H.; Chang, M.J.; Lin, G.F. An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting. Stoch. Environ. Res. Risk Assess. 2022, 36, 1541–1561. [Google Scholar] [CrossRef]
- Chen, X.; Gupta, L.; Tragoudas, S. Improving the Forecasting and Classification of Extreme Events in Imbalanced Time Series Through Block Resampling in the Joint Predictor-Forecast Space. IEEE Access 2022, 10, 121048–121079. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Taylor, J.W. A quantile regression approach to estimating the distribution of multiperiod returns. J. Deriv. 1999, 7, 64–78. [Google Scholar] [CrossRef]
- Hoss, F.; Fischbeck, P.S. Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables. Hydrol. Earth Syst. Sci. 2015, 19, 3969–3990. [Google Scholar] [CrossRef]
- Fan, F.M.; Schwanenberg, D.; Collischonn, W.; Weerts, A. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil. J. Hydrol. Reg. Stud. 2015, 4, 196–227. [Google Scholar] [CrossRef]
- Kotu, V.; Deshpande, B. Predictive Analytics and Data Mining Concepts and Practice with RapidMiner; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Huang, M.L.; Nguyen, C. High quantile regression for extreme events. J. Stat. Distrib. Appl. 2017, 4, 4. [Google Scholar] [CrossRef]
- Ditthakit, P.; Pinthong, S.; Salaeh, N.; Weekaew, J.; Tran, T.T.; Pham, Q.B. Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Eng. J. 2022, 14, 101941. [Google Scholar] [CrossRef]
- Pinthong, S.; Ditthakit, P.; Salaeh, N.; Wipulanusat, W.; Weesakul, U.; Elkhrachy, I.; Yadav, K.K.; Kushwaha, N.L. Combining Long-Short Term Memory and Genetic Programming for Monthly Rainfall Downscaling in Southern Thailand’s Thale Sap Songkhla River Basin. Eng. Sci. 2024, 28, 1047. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. J. Am. Geriatr. Soc. 2009, 2, 1–758. [Google Scholar] [CrossRef]
- Salaeh, N.; Ditthakit, P.; Pinthong, S.; Hasan, M.A.; Islam, S.; Mohammadi, B.; Linh, N.T.T. Long-Short Term Memory Technique for Monthly Rainfall Prediction in Thale Sap Songkhla River Basin, Thailand. Symmetry 2022, 14, 1599. [Google Scholar] [CrossRef]
- Pinthong, S.; Ditthakit, P.; Salaeh, N.; Hasan, M.A.; Son, C.T.; Linh, N.T.T.; Islam, S.; Yadav, K.K. Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand. Environ. Sci. Pollut. Res. 2022, 31, 54044–54060. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the KDD ′16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Aditya Sai Srinivas, T.; Somula, R.; Govinda, K.; Saxena, A.; Pramod Reddy, A. Estimating rainfall using machine learning strategies based on weather radar data. Int. J. Commun. Syst. 2019, 33, e3999. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. Forecasting multi-step-ahead reservoir monthly and daily inflow using machine learning models based on different scenarios. Appl. Intell. 2023, 53, 10893–10916. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Chen, J.; Zhao, B. Real-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological model. J. Hydrol. 2019, 579, 124229. [Google Scholar] [CrossRef]
- Deb, D.; Arunachalam, V.; Raju, K.S. Daily reservoir inflow prediction using stacking ensemble of machine learning algorithms. J. Hydroinform. 2024, 26, 972–997. [Google Scholar] [CrossRef]
- Osman, A.I.A.; Ahmed, A.N.; Chow, M.F.; Huang, Y.F.; El-Shafie, A. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [Google Scholar] [CrossRef]
- Hochreiter, S.J.; Schmidhuber, U. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Kelleher Namee, B.M.; D’Arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics Algorithms, Worked Examples, and Case Studies; The MIT Press: London, UK, 2015. [Google Scholar]
- Domingos, S.; de Oliveira, J.F.L.; de Mattos Neto, P.S.G. An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl.-Based Syst. 2019, 175, 72–86. [Google Scholar] [CrossRef]
- Ghojogh, B.; Samad, M.N.; Mashhadi, S.A.; Kapoor, T.; Ali, W.; Karray, F.; Crowley, M. Feature Selection and Feature Extraction in Pattern Analysis: A Literature Review. arXiv 2019, arXiv:1905.02845. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Taylor, K.E. Taylor Diagram Primer. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=339c44e9e8e064c9f689d763f3352429380b0a94 (accessed on 24 September 2024).
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice. Available online: https://otexts.com/fpp3/ (accessed on 4 November 2024).
- Nash, J.; Sutcliffe, J.E. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error & NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar]
- Cheung, Y.-W.; Lai, K.S. Lag Order and Critial Values of Augumentated Dickey Fuller Test. J. Bus. Econ. Stat. 1995, 13, 227–280. [Google Scholar]
- Austin, P.C.; Steyerberg, E.W. The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 2015, 68, 627–636. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Finan, C. Linear regression and the normality assumption. J. Clin. Epidemiol. 2018, 98, 146–151. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Anctil, F.; Tape, D.G. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 2004, 3 (Suppl. 1), S121–S128. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO-monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Agarwal, A.; Marwan, N.; Rathinasamy, M.; Merz, B.; Kurths, J. Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach. Nonlinear Process. Geophys. 2017, 24, 599–611. [Google Scholar] [CrossRef]
- Hauswirth, S.M.; Bierkens, M.F.; Beijk, V.; Wanders, N. The potential of data driven approaches for quantifying hydrological extremes. Adv. Water Resour. 2021, 155, 104017. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Z.; Jones, P.D. A Decision-tree Approach to Seasonal Prediction of Extreme Short Title: Decision-tree Approach to Seasonal Prediction of Extreme Precipitation. Int. J. Climatol. 2020, 40, 255–272. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Z.; Tong, X.; Han, Z.; Ma, M.; Yu, S.; Xia, J. Seasonal prediction of summer extreme precipitation over the Yangtze River based on random forest. Weather. Clim. Extremes 2022, 37, 100477. [Google Scholar] [CrossRef]
Data Used | Variables (Monthly) | Types | Data Sources | |
---|---|---|---|---|
Historical hydrological data | Reservoir inflow (Inf) | Input/Output | The Upper Pak Phanang Operation and Maintenance Project, Irrigation Office 15, Royal Irrigation Department (RID), Thailand | |
Rainfall (R) reservoir storage (S) | Input | |||
Historical climate change indices | Ocean indices | Dipole Mode Index (DMI) | Input | The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) |
Southern Oscillation Index (SOI) | Input | |||
Sea surface temperature (SST) | NINO1+2, ANOM1+2, NINO3, ANOM3, NINO4, ANOM4, NO3.4, and ANOM3.4 | Input | The US National Oceanic and Atmospheric Administration (NOAA) |
Data | Statistical Value | |||||
---|---|---|---|---|---|---|
Max | Min | Average | SD | Kurtosis | Skewness | |
NINO1+2 | 27.53 | 18.57 | 22.89 | 2.33 | −1.17 | 0.15 |
ANOM1+2 | 1.64 | −2.10 | −0.24 | 0.80 | −0.57 | 0.15 |
NINO3 | 28.05 | 23.17 | 25.71 | 1.17 | −0.85 | −0.19 |
ANOM3 | 1.53 | −1.81 | −0.17 | 0.70 | −0.38 | −0.05 |
NINO4 | 29.88 | 26.43 | 28.49 | 0.82 | −0.55 | −0.62 |
ANOM4 | 1.25 | −1.71 | −0.07 | 0.75 | −0.84 | −0.40 |
NO3.4 | 28.43 | 24.65 | 26.85 | 0.93 | −0.57 | −0.52 |
ANOM3.4 | 1.72 | −1.92 | −0.18 | 0.79 | −0.33 | −0.06 |
SOI | 4.80 | −5.20 | 0.57 | 1.52 | 0.56 | 0.18 |
DMI | 0.76 | −0.49 | 0.07 | 0.23 | 0.23 | 0.22 |
R | 1017.40 | 0.00 | 172.71 | 164.86 | 7.25 | 2.27 |
Inf | 38.93 | 0.00 | 6.59 | 6.26 | 7.28 | 2.26 |
S | 34.58 | 0.00 | 5.87 | 5.59 | 7.25 | 2.27 |
Methods | Quantile (%) for Discrimination | Symbol |
---|---|---|
Individual models | ||
eXtreme Gradient Boosting | - | XG |
Random Forest | - | RF |
Long Short-Term Memory Networks | - | LSTM |
Multiple Linear Regression | - | MLR |
Hybrid models | ||
eXtreme Gradient Boosting (extreme) + Random Forest (normal) | 75 | XG-RF-75 |
eXtreme Gradient Boosting (extreme) + Random Forest (normal) | 80 | XG-RF-80 |
Random Forest (extreme) + eXtreme Gradient Boosting (normal) | 75 | RF-XG-75 |
Random Forest (extreme) + eXtreme Gradient Boosting (normal) | 80 | RF-XG-80 |
Random Forest (extreme) + Random Forest (extreme) | 75 | RF-RF-75 |
Random Forest (extreme) + Random Forest (extreme) | 80 | RF-RF-80 |
eXtreme Gradient Boosting (extreme) + eXtreme Gradient Boosting (normal) | 75 | XG-XG-75 |
eXtreme Gradient Boosting (extreme) + eXtreme Gradient Boosting (normal) | 80 | XG-XG-80 |
Multiple Linear Regression (extreme) + eXtreme Gradient Boosting (normal) | 75 | MLR-XG-75 |
Multiple Linear Regression (extreme) + eXtreme Gradient Boosting (normal) | 80 | MLR-XG-80 |
eXtreme Gradient Boosting (extreme) + Multiple Linear Regression (normal) | 75 | XG-MLR -75 |
eXtreme Gradient Boosting (extreme) + Multiple Linear Regression (normal) | 80 | XG-MLR -80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weekaew, J.; Ditthakit, P.; Kittiphattanabawon, N.; Pham, Q.B. Quartile Regression and Ensemble Models for Extreme Events of Multi-Time Step-Ahead Monthly Reservoir Inflow Forecasting. Water 2024, 16, 3388. https://doi.org/10.3390/w16233388
Weekaew J, Ditthakit P, Kittiphattanabawon N, Pham QB. Quartile Regression and Ensemble Models for Extreme Events of Multi-Time Step-Ahead Monthly Reservoir Inflow Forecasting. Water. 2024; 16(23):3388. https://doi.org/10.3390/w16233388
Chicago/Turabian StyleWeekaew, Jakkarin, Pakorn Ditthakit, Nichnan Kittiphattanabawon, and Quoc Bao Pham. 2024. "Quartile Regression and Ensemble Models for Extreme Events of Multi-Time Step-Ahead Monthly Reservoir Inflow Forecasting" Water 16, no. 23: 3388. https://doi.org/10.3390/w16233388
APA StyleWeekaew, J., Ditthakit, P., Kittiphattanabawon, N., & Pham, Q. B. (2024). Quartile Regression and Ensemble Models for Extreme Events of Multi-Time Step-Ahead Monthly Reservoir Inflow Forecasting. Water, 16(23), 3388. https://doi.org/10.3390/w16233388