Stability of Loess Slopes Under Different Plant Root Densities and Soil Moisture Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Test
2.3. Data Process
3. Results
3.1. Species Composition of Plant Communities
3.2. Physical and Hydrological Properties of Soils in the Root Systems of Different Types of Plants
3.3. Landslide Profile Construction and Selection of Computational Conditions
3.4. Soil Parameters Under Different Test Conditions
3.5. Slope Stability Under Different Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nypan, I.M. Geomorphological Study of Unstable Rock Slope Deformation on Stáluvárri, Kåfjorden, Troms. Master’s Thesis, UiT Norges Arktiske Universitet, Tromsø, Norway, 2024. [Google Scholar]
- Ringenbach, A. Experimental Quantification of Deadwood Influence on Rockfall Dynamics and Its Incorporation into Regional-Scale Rockfall Models. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2022. [Google Scholar]
- Wen, Y.; Gao, P.; Mu, X.; Li, M.; Su, Y.; Wang, H. Experimental Study on Landslides in Terraced Fields in the Chinese Loessial Region under Extreme Rainfall. Water 2021, 13, 270. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, G.; Peng, J. Initiation and Mobility of Recurring Loess Flowslides on the Heifangtai Irrigated Terrace in China: Insights from Hydrogeological Conditions and Liquefaction Criteria. Eng. Geol. 2022, 302, 106619. [Google Scholar] [CrossRef]
- Xin, P.; Liang, C.; Wu, S.; Liu, Z.; Shi, J.; Wang, T. Kinematic Characteristics and Dynamic Mechanisms of Large-Scale Landslides in a Loess Plateau: A Case Study for the North Bank of the Baoji Stream Segment of the Wei River, China. Bull. Eng. Geol. Environ. 2016, 75, 659–671. [Google Scholar] [CrossRef]
- Khan, A.; Gupta, S.; Gupta, S.K. Multi-Hazard Disaster Studies: Monitoring, Detection, Recovery, and Management, Based on Emerging Technologies and Optimal Techniques. Int. J. Disaster Risk Reduct. 2020, 47, 101642. [Google Scholar] [CrossRef]
- Basher, R. Global Early Warning Systems for Natural Hazards: Systematic and People-Centred. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2167–2182. [Google Scholar] [CrossRef]
- Garcia, C.; Fearnley, C.J. Evaluating Critical Links in Early Warning Systems for Natural Hazards. Environ. Hazards 2012, 11, 123–137. [Google Scholar] [CrossRef]
- Liu, X.; Lan, H.; Li, L.; Cui, P. An Ecological Indicator System for Shallow Landslide Analysis. CATENA 2022, 214, 106211. [Google Scholar] [CrossRef]
- Bordoloi, S.; Ng, C.W.W. The Effects of Vegetation Traits and Their Stability Functions in Bio-Engineered Slopes: A Perspective Review. Eng. Geol. 2020, 275, 105742. [Google Scholar] [CrossRef]
- Arnone, E.; Caracciolo, D.; Noto, L.V.; Preti, F.; Bras, R.L. Modeling the Hydrological and Mechanical Effect of Roots on Shallow Landslides. Water Resour. Res. 2016, 52, 8590–8612. [Google Scholar] [CrossRef]
- Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
- Lann, T.; Bao, H.; Lan, H.; Zheng, H.; Yan, C.; Peng, J. Hydro-Mechanical Effects of Vegetation on Slope Stability: A Review. Sci. Total Environ. 2024, 926, 171691. [Google Scholar] [CrossRef] [PubMed]
- Alaoui, A.; Lipiec, J.; Gerke, H.H. A Review of the Changes in the Soil Pore System Due to Soil Deformation: A Hydrodynamic Perspective. Soil Tillage Res. 2011, 115–116, 1–15. [Google Scholar] [CrossRef]
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable Plant Root Traits for Protecting Natural and Engineered Slopes against Landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Gue, S.-S. Landslides: How, Why and the Way Forward. IEM J. 2023, 84. [Google Scholar] [CrossRef]
- Akinola, A.I. Temporal and Thermal Effects on Fluvial Erosion of Cohesive Streambank Soils. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2018. [Google Scholar]
- Yerro, A.; Pinyol, N.M.; Alonso, E.E. Internal Progressive Failure in Deep-Seated Landslides. Rock Mech. Rock Eng. 2016, 49, 2317–2332. [Google Scholar] [CrossRef]
- Dong, H.; Song, Y.; Chen, T.; Zhao, J.; Yu, L. Geoconservation and Geotourism in Luochuan Loess National Geopark, China. Quat. Int. 2014, 334–335, 40–51. [Google Scholar] [CrossRef]
- He, P.; Guo, J.; Zhang, S. Investigation of Stability and Underlying Mechanism of Unstable Subgrades Loess Modified by Carbide Slag in Road Construction Projection. Buildings 2023, 13, 2176. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Li, R.; Li, Y.; Wang, J. TIC-Driven Sustainable Land Use Mode in the Loess Plateau: A Case Study of Gully Land Consolidation Project in Yan’an City, China. Land Use Policy 2024, 140, 107107. [Google Scholar] [CrossRef]
- Naseer, S. A Study of Rainfall Infiltration on Slope Stability Using Sand Piles to Reinforce Slopes. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2023. [Google Scholar]
- Wang, H.Y.; Liu, X.J.; Li, J.S.; Liu, C.P.; Jiang, J.Y. Research and Practice of Regional Comprehensive Disaster Prevention and Mitigation Planning: A Case Study in Tanghai County. Appl. Mech. Mater. 2013, 256–259, 2747–2753. [Google Scholar] [CrossRef]
- Pearce, L. Disaster Management and Community Planning, and Public Participation: How to Achieve Sustainable Hazard Mitigation. Nat. Hazards 2003, 28, 211–228. [Google Scholar] [CrossRef]
- Wang, H.B.; Wu, S.R.; Shi, J.S.; Li, B. Qualitative Hazard and Risk Assessment of Landslides: A Practical Framework for a Case Study in China. Nat. Hazards 2013, 69, 1281–1294. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Wang, L.; Samui, P.; Chwała, M.; He, Y. Landslide Susceptibility Research Combining Qualitative Analysis and Quantitative Evaluation: A Case Study of Yunyang County in Chongqing, China. Forests 2022, 13, 1055. [Google Scholar] [CrossRef]
- Acevedo, A.M.G.; de Brum Passini, L.; Talamini, A.A.; Kormann, A.C.M.; Fiori, A.P. Assessing Limit Equilibrium Method Approach and Mapping Critical Areas for Slope Stability Analysis in Serra Do Mar Paranaense—Brazil. Environ. Earth Sci. 2021, 80, 572. [Google Scholar] [CrossRef]
- Arai, K.; Tagyo, K. Determination of Noncircular Slip Surface Giving the Minimum Factor of Safety in Slope Stability Analysis. Soils Found. 1985, 25, 43–51. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, W.; Zhao, K.; Zhou, X.; Du, P.; Guo, C.; Ju, Y.; Pu, C. Effects of Land-Use Management on Soil Erosion: A Case Study in a Typical Watershed of the Hilly and Gully Region on the Loess Plateau of China. CATENA 2021, 206, 105551. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.; He, Y.; Yao, W. Assessment of Bank Gully Development and Vegetation Coverage on the Chinese Loess Plateau. Geomorphology 2015, 228, 462–469. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, Y.; Pei, Q.; Guo, J.; Jian, S. Study on the Root Characteristics and Effects on Soil Reinforcement of Slope-Protection Vegetation in the Chinese Loess Plateau. Forests 2024, 15, 464. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, X.; Huang, H.; Liu, D.; Hui, X. Study on Permeability and Collapsibility Characteristics of Sandy Loess in Northern Loess Plateau, China. J. Hydrol. 2021, 603, 126883. [Google Scholar] [CrossRef]
- Jandyal, T.; Shah, M.Y. Strength Behaviour of Marginal Soil Reinforced with Grass Roots. Transp. Infrastruct. Geotech. 2024, 11, 1799–1827. [Google Scholar] [CrossRef]
- Innocenti, A.; Rosi, A.; Tofani, V.; Pazzi, V.; Gargini, E.; Masi, E.B.; Segoni, S.; Bertolo, D.; Paganone, M.; Casagli, N. Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling. Remote Sens. 2023, 15, 2159. [Google Scholar] [CrossRef]
- Hencher, S.R. Preferential Flow Paths through Soil and Rock and Their Association with Landslides. Hydrol. Process. 2010, 24, 1610–1630. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Qin, M.; Cui, P.; Jiang, Y.; Guo, J.; Zhang, G.; Ramzan, M. Occurrence of Shallow Landslides Triggered by Increased Hydraulic Conductivity Due to Tree Roots. Landslides 2022, 19, 2593–2604. [Google Scholar] [CrossRef]
- Yan, G.; Yin, Y.; Huang, B.; Zhang, Z.; Zhu, S. Formation Mechanism and Characteristics of the Jinjiling Landslide in Wushan in the Three Gorges Reservoir Region, China. Landslides 2019, 16, 2087–2101. [Google Scholar] [CrossRef]
- Nie, W.; Tian, C.; Song, D.; Liu, X.; Wang, E. Disaster Process and Multisource Information Monitoring and Warning Method for Rainfall-Triggered Landslide: A Case Study in the Southeastern Coastal Area of China. Nat Hazards 2024. [Google Scholar] [CrossRef]
- Wei, X.; Yan, D.; Ma, P. Study on the Characteristics and Geomorphologic Evolution Patterns of Loess Landslides on the Heifangtai Terrace, China. Preprints 2023. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Wang, Y.; Sun, H.; Li, Q. Threshold Effects of Vegetation Coverage on Runoff and Soil Loss in the Loess Plateau of China: A Meta-Analysis. Geoderma 2022, 412, 115720. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying Vegetation Restoration Effectiveness and Driving Factors on Different Micro-Topographic Types of Hilly Loess Plateau: From the Perspective of Ecological Resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Tan, X. Distinguishing the Effects of Vegetation Restoration on Runoff and Sediment Generation on Simulated Rainfall on the Hillslopes of the Loess Plateau of China. Plant Soil 2020, 447, 393–412. [Google Scholar] [CrossRef]
- Mickovski, S.B.; Stokes, A.; van Beek, R.; Ghestem, M.; Fourcaud, T. Simulation of Direct Shear Tests on Rooted and Non-Rooted Soil Using Finite Element Analysis. Ecol. Eng. 2011, 37, 1523–1532. [Google Scholar] [CrossRef]
- Comino, E.; Druetta, A. The Effect of Poaceae Roots on the Shear Strength of Soils in the Italian Alpine Environment. Soil Tillage Res. 2010, 106, 194–201. [Google Scholar] [CrossRef]
- Wei, T.; Fan, W.; Yuan, W.; Wei, Y.; Yu, B. Three-Dimensional Pore Network Characterization of Loess and Paleosol Stratigraphy from South Jingyang Plateau, China. Environ. Earth Sci. 2019, 78, 333. [Google Scholar] [CrossRef]
- Hou, K.; Qian, H.; Zhang, Y.; Zhang, Q.; Qu, W. New Insights into Loess Formation on the Southern Margin of the Chinese Loess Plateau. CATENA 2021, 204, 105444. [Google Scholar] [CrossRef]
- Nsenga Kumwimba, M.; Zhu, B.; Stefanakis, A.I.; Ajibade, F.O.; Dzakpasu, M.; Soana, E.; Wang, T.; Arif, M.; Kavidia Muyembe, D.; Agboola, T.D. Advances in Ecotechnological Methods for Diffuse Nutrient Pollution Control: Wicked Issues in Agricultural and Urban Watersheds. Front. Environ. Sci. 2023, 11, 1199923. [Google Scholar] [CrossRef]
- Gaur, N.; Mohanty, B.P. Land-Surface Controls on near-Surface Soil Moisture Dynamics: Traversing Remote Sensing Footprints. Water Resour. Res. 2016, 52, 6365–6385. [Google Scholar] [CrossRef]
- Lan, H.; Zhang, T.; Peng, J.; Zhang, F.; Li, L.; Wu, Y.; Tian, N.; Clague, J.J. Large Scale Land Reclamation and the Effects on Hydro-Mechanical Behavior in Loess and Loess-Derived Fill. Eng. Geol. 2023, 323, 107241. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, T.; Ren, K.; Sha, G.; Guo, X.; Fu, Y.; Yu, H. The Coupling Interaction of Soil Organic Carbon Stock and Water Storage after Vegetation Restoration on the Loess Plateau, China. J. Environ. Manag. 2022, 306, 114481. [Google Scholar] [CrossRef]
- Jianzhong, S. Environmental Geology in Loess Areas of China. Environ. Geol. Water Sci 1988, 12, 49–61. [Google Scholar] [CrossRef]
- Jin-xing, Z.; Chun-yun, Z.; Jing-ming, Z.; Xiao-hui, W.; Zhou-hong, L. Landslide Disaster in the Loess Area of China. J. For. Res. 2002, 13, 157–161. [Google Scholar] [CrossRef]
- Yurui, L.; Yi, L.; Pengcan, F.; Hualou, L. Impacts of Land Consolidation on Rural Human–Environment System in Typical Watershed of the Loess Plateau and Implications for Rural Development Policy. Land Use Policy 2019, 86, 339–350. [Google Scholar] [CrossRef]
- Badamfirooz, J.; Sarkheil, H.; Mousazadeh, R.; Ayatollahi, F. A Proposed Framework for Estimating the Environmental Damage Cost of Mining Activities in Line with the Goals of Sustainable Mining: A Case Study of Sungun-Ahar Copper Mine, Iran. Int. J. Min. Geo-Eng. 2022, 56, 167–180. [Google Scholar] [CrossRef]
- Nan, G.; Han, L.; Wang, Y. Assessing Vulnerability of Coupled Human–Environment Systems and Its Influence Factors in Yan’an City, China. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 783–801. [Google Scholar] [CrossRef]
- Li, B.; Han, L.; Li, L. Construction of Ecological Security Pattern in Combination with Landslide Sensitivity: A Case Study of Yan’an City, China. J. Environ. Manag. 2024, 366, 121765. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Wang, J.; Zhou, P.; Guo, M. A Regional Landslide Stability Analysis Method under the Combined Impact of Rainfall and Vegetation Roots in South China. Adv. Civ. Eng. 2021, 2021, 5512281. [Google Scholar] [CrossRef]
- Pei, T.; Ji, Z.; Chen, Y.; Wu, H.; Hou, Q.; Qin, G.; Xie, B. The Sensitivity of Vegetation Phenology to Extreme Climate Indices in the Loess Plateau, China. Sustainability 2021, 13, 7623. [Google Scholar] [CrossRef]
- Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.A.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.; Anthelme, F.; et al. Facilitation in Plant Communities: The Past, the Present, and the Future. J. Ecol. 2008, 96, 18–34. [Google Scholar] [CrossRef]
- Yao, Y.; Shao, M.; Fu, X.; Wang, X.; Wei, X. Effects of Shrubs on Soil Nutrients and Enzymatic Activities over a 0–100 cm Soil Profile in the Desert-Loess Transition Zone. CATENA 2019, 174, 362–370. [Google Scholar] [CrossRef]
- Huang, H.; Reddy, N.G.; Huang, X.; Chen, P.; Wang, P.; Zhang, Y.; Huang, Y.; Lin, P.; Garg, A. Effects of Pyrolysis Temperature, Feedstock Type and Compaction on Water Retention of Biochar Amended Soil. Sci. Rep. 2021, 11, 7419. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, G.; Li, X.; Sun, D. Hydro-Mechanical Behavior of Expansive Soils with Different Dry Densities over a Wide Suction Range. Acta Geotech. 2020, 15, 265–278. [Google Scholar] [CrossRef]
- Zhu, R.; Xie, W.; Liu, Q.; Yang, H.; Wang, Q. Shear Behavior of Sliding Zone Soil of Loess Landslides via Ring Shear Tests in the South Jingyang Plateau. Bull. Eng. Geol. Environ. 2022, 81, 244. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhang, J.; Liu, G. Static and Dynamic Properties Study on Interface between New Polymer Materials and Silty Clay Based on Ring Shear Tests. Polymers 2023, 15, 634. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zou, Q.; Jiang, Y.; Zhou, B.; Yao, H.; Cui, J.; Zhou, W.; Chen, S. Development of an Integrated Model for Assessing Landslide Susceptibility on Vegetated Slopes under Random Rainfall Scenarios. Ecol. Eng. 2024, 199, 107150. [Google Scholar] [CrossRef]
- Hassan, W.; Alshameri, B.; Nawaz, M.N.; Qamar, S.U. Experimental Study on Shear Strength Behavior and Numerical Study on Geosynthetic-Reinforced Cohesive Soil Slope. Innov. Infrastruct. Solut. 2022, 7, 349. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, J.; Yang, X. A Novel Approach for Slope Stability Evaluation Considering Landslide Dynamics and Its Application to Reservoir Landslide. Nat. Hazards 2024, 120, 3589–3621. [Google Scholar] [CrossRef]
- Xu, J.; Sun, C. Geological Evaluation of Landslide Engineering in Southern Mountainous Areas of Henan Province. E3S Web Conf. 2024, 554, 01011. [Google Scholar] [CrossRef]
- Bodner, G.; Mentler, A.; Keiblinger, K. Plant Roots for Sustainable Soil Structure Management in Cropping Systems. In The Root Systems in Sustainable Agricultural Intensification; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 45–90. ISBN 978-1-119-52541-7. [Google Scholar]
- Wang, J.; Li, P.; Ma, Y.; Li, T. Influence of Irrigation Method on the Infiltration in Loess: Field Study in the Loess Plateau. Desalination Water Treat. 2018, 110, 298–307. [Google Scholar] [CrossRef]
- Tang, Y.M.; Xue, Q.; Li, Z.G.; Feng, W. Three Modes of Rainfall Infiltration Inducing Loess Landslide. Nat. Hazards 2015, 79, 137–150. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The Rainfall Intensity–Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Li, Z.; Ma, P.; Zhuang, J.; Mu, Q.; Kong, J.; Zhao, L.; Peng, J. Permeability Characteristics, Structural Failure Characteristics, and Triggering Process of Loess Landslides in Two Typical Strata Structures. Eng. Geol. 2024, 341, 107728. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, F.; Guo, Z.; Feng, W.; Li, Z.; Wang, J.; Sun, Q.; Ma, H.; Li, Y. Integrating Principal Component Analysis with Statistically-Based Models for Analysis of Causal Factors and Landslide Susceptibility Mapping: A Comparative Study from the Loess Plateau Area in Shanxi (China). J. Clean. Prod. 2020, 277, 124159. [Google Scholar] [CrossRef]
Plant Type | Natural Water Content (%) | Saturated Water Content (%) | Natural Density (g/cm3) | Saturation Density (g/cm3) | Dry Density (g/cm3) | Porosity Ratio | Soil Coefficient of Permeability (Kfs, mm/min) |
---|---|---|---|---|---|---|---|
I | 14.22 | 32.95 | 1.44 | 1.85 | 1.24 | 1.09 | 0.74 |
II | 16.82 | 32.56 | 1.43 | 1.82 | 1.23 | 1.15 | 0.52 |
III | 14.84 | 26.17 | 1.49 | 1.83 | 1.3 | 1.02 | 0.98 |
IV | 13.65 | 23.08 | 1.83 | 2.08 | 1.61 | 0.7 | 1.45 |
Working Condition | Lithology | Bulk Density (KN/m3) | Cohesion (kpa) | Angle of Internal Friction (°) |
---|---|---|---|---|
Different root densities | Natural root density | 14.0 | 29.13 | 28.37 |
1.5 times that root density | 14.0 | 25.43 | 25.64 | |
2.0 times that root density | 14.0 | 23.13 | 21.80 | |
Different soil moisture contents | 10% | 13.9 | 22.46 | 27.02 |
20% | 14.1 | 1.51 | 22.78 | |
30% | 14.5 | 4.35 | 20.30 |
Steady State | Very Unstable | Unstable | Stabilized | Stable |
---|---|---|---|---|
Stabilization factor | Fs < 1.00 | 1 ≤ Fs < 1.05 | 1.05 ≤ Fs < 1.15 | Fs ≥ 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Yang, L.; Peng, B.; Huang, Z.; Hua, D.; Sun, Z.; He, L. Stability of Loess Slopes Under Different Plant Root Densities and Soil Moisture Contents. Water 2024, 16, 3558. https://doi.org/10.3390/w16243558
Shi L, Yang L, Peng B, Huang Z, Hua D, Sun Z, He L. Stability of Loess Slopes Under Different Plant Root Densities and Soil Moisture Contents. Water. 2024; 16(24):3558. https://doi.org/10.3390/w16243558
Chicago/Turabian StyleShi, Lei, Liangyan Yang, Biao Peng, Zhenzhen Huang, Dongwen Hua, Zenghui Sun, and Lirong He. 2024. "Stability of Loess Slopes Under Different Plant Root Densities and Soil Moisture Contents" Water 16, no. 24: 3558. https://doi.org/10.3390/w16243558
APA StyleShi, L., Yang, L., Peng, B., Huang, Z., Hua, D., Sun, Z., & He, L. (2024). Stability of Loess Slopes Under Different Plant Root Densities and Soil Moisture Contents. Water, 16(24), 3558. https://doi.org/10.3390/w16243558