Determination of Heavy Metals and Hemato-Biochemical Profiling of Bagre marinus and Bagarius bagarius in Jhelum River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sample Collection
2.3. Water Sample Preparation
2.4. Sediment Sample Preparation
2.5. Fish Tissue Sample Preparation
2.6. Hematological Parameters
2.7. Serum Biochemical Analysis
2.8. Statistic
3. Results
3.1. Bioaccumulation of Heavy Metals Across the Sampling Sites
3.2. The Hematological and Biochemical Parameters
3.3. Tissue Specific Profile
4. Discussion
4.1. Bioaccumulation of Heavy Metals Across Sampling Sites and Studied Tissues
4.2. The Hematological Profile
4.3. The Biochemical Profile
5. Conclusions, Recommendations, and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kanwal, H.; Raza, A.; Zaheer, M.S.; Nadeem, M.; Ali, H.H.; Manoharadas, S.; Rizwan, M.; Kashif, M.S.; Ahmad, U.; Ikram, K. Transformation of Heavy Metals from Contaminated Water to Soil, Fodder and Animals. Sci. Rep. 2024, 14, 11705. [Google Scholar] [CrossRef]
- Yurdakok-Dikmen, B.; Kuzukiran, O.; Filazi, A.; Kara, E. Measurement of Selected Polychlorinated Biphenyls (PCBs) in Water via Ultrasound Assisted Emulsification–Microextraction (USAEME) Using Low-Density Organic Solvents. J. Water Health 2015, 14, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ansari, Z.; Matondkar, S. Anthropogenic Activities Including Pollution and Contamination of Coastal Marine Environment. J. Ecophysiol. Occup. Health 2014, 14, 71–78. [Google Scholar] [CrossRef]
- Prakash, S.; Verma, A. Anthropogenic Activities and Biodiversity Threats. Int. J. Biol. Innov. IJBI 2022, 4, 94–103. [Google Scholar] [CrossRef]
- Shiry, N.; Derakhshesh, N.; Gholamhosseini, A.; Pouladi, M.; Faggio, C. Heavy Metal Concentrations in Cynoglossus arel (Bloch & Schneider, 1801) and Sediment in the Chabahar Bay, Iran. Int. J. Environ. Res. 2021, 15, 773–784. [Google Scholar]
- Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.D.; Alam, S.I.; Faggio, C. Effects of Heavy Metals on Fish Physiology–a Review. Chemosphere 2022, 300, 134519. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals; Saleh, H.E.-D.M., Aglan, R.F., Eds.; IntechOpen: London, UK, 2018; pp. 10, 115–132. [Google Scholar]
- Jamil Emon, F.; Rohani, M.F.; Sumaiya, N.; Tuj Jannat, M.F.; Akter, Y.; Shahjahan, M.; Goh, K.W. Bioaccumulation and Bioremediation of Heavy Metals in Fishes—A Review. Toxics 2023, 11, 510. [Google Scholar] [CrossRef]
- Mahamood, M.; Khan, F.R.; Zahir, F.; Javed, M.; Alhewairini, S.S. Bagarius Bagarius, and Eichhornia Crassipes Are Suitable Bioindicators of Heavy Metal Pollution, Toxicity, and Risk Assessment. Sci. Rep. 2023, 13, 1824. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper: An Essential Metal in Biology. Curr. Biol. 2011, 21, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Altowayti, W.A.H.; Almoalemi, H.; Shahir, S.; Othman, N. Comparison of Culture-Independent and Dependent Approaches for Identification of Native Arsenic-Resistant Bacteria and Their Potential Use for Arsenic Bioremediation. Ecotoxicol. Environ. Saf. 2020, 205, 111267. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Płaza, G.A.; Kasenbacher, S. Characterization of Bacterial Communities at Heavy-Metal-Contaminated Sites. Chemosphere 2011, 82, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Flores, C.M.; Del Angel, E.; Frías, D.M.; Gómez, A.L. Evaluación de Parámetros Fisicoquímicos y Metales Pesados En Agua y Sedimento Superficial de La Laguna de Las Ilusiones, Tabasco, México. Tecnol. Cienc. Agua 2018, 9, 39–57. [Google Scholar] [CrossRef]
- Rocha, C.H.B.; Costa, H.F.; Azevedo, L.P. Heavy Metals in the São Mateus Stream Basin, Peixe River Basin, Paraiba Do Sul River Basin, Brazil. Ambient. Agua 2019, 14, e2329. [Google Scholar] [CrossRef]
- Jia, Z.; Li, S.; Liu, Q.; Jiang, F.; Hu, J. Distribution and Partitioning of Heavy Metals in Water and Sediments of a Typical Estuary (Modaomen, South China): The Effect of Water Density Stratification Associated with Salinity. Environ. Pollut. 2021, 287, 117277. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy Metals in Water and Surface Sediments of the Fenghe River Basin, China: Assessment and Source Analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Prasad, S.; Saluja, R.; Joshi, V.; Garg, J.K. Heavy Metal Pollution in Surface Water of the Upper Ganga River, India: Human Health Risk Assessment. Environ. Monit. Assess. 2020, 192, 742. [Google Scholar] [CrossRef]
- Khan, R.; Saxena, A.; Shukla, S.; Sekar, S.; Senapathi, V.; Wu, J. Environmental Contamination by Heavy Metals and Associated Human Health Risk Assessment: A Case Study of Surface Water in Gomti River Basin, India. Environ. Sci. Pollut. Res. 2021, 28, 56105–56116. [Google Scholar] [CrossRef]
- Ahmed, J.; Wong, L.P.; Chua, Y.P.; Channa, N.; Memon, U.-R.; Garn, J.V.; Yasmin, A.; VanDerslice, J.A. Heavy Metals Drinking Water Contamination and Health Risk Assessment among Primary School Children of Pakistan. J. Environ. Sci. Heal. Part A 2021, 56, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Hameed, S.; Liaqat, I.; Ali Khan, A.A.; Abdul Manan, H.; Shahid, R.; Altaf, M. Heavy Metals Contamination in Water, Sediments and Fish of Freshwater Ecosystems in Pakistan. Water Pract. Technol. 2022, 17, 1253–1272. [Google Scholar] [CrossRef]
- Muhammad, S.; Ahmad, K. Heavy Metal Contamination in Water and Fish of the Hunza River and Its Tributaries in Gilgit–Baltistan: Evaluation of Potential Risks and Provenance. Environ. Technol. Innov. 2020, 20, 101159. [Google Scholar] [CrossRef]
- Sharaf, S.; Khan, M.-R.; Aslam, A.; Rabbani, M. Comparative Study of Heavy Metals Residues and Histopathological Alterations in Large Ruminants from Selected Areas around Industrial Waste Drain. Pak. Vet. J. 2020, 40, 55–60. [Google Scholar]
- Iqbal, Z.; Abbas, F.; Ibrahim, M.; Qureshi, T.I.; Gul, M.; Mahmood, A. Assessment of Heavy Metal Pollution in Brassica Plants and Their Impact on Animal Health in Punjab, Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 22768–22778. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Muhammad, S. Heavy Metals Contamination in Soils and Plants along with the Mafic–Ultramafic Complex (Ophiolites), Baluchistan, Pakistan: Evaluation for the Risk and Phytoremediation Potential. Environ. Technol. Innov. 2020, 19, 100931. [Google Scholar] [CrossRef]
- Khan, S.A.; Muhammad, S.; Nazir, S.; Shah, F.A. Heavy Metals Bounded to Particulate Matter in the Residential and Industrial Sites of Islamabad, Pakistan: Implications for Non-Cancer and Cancer Risks. Environ. Technol. Innov. 2020, 19, 100822. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Jolly, Y.N.; Enyoh, C.E.; Khandaker, M.U.; Hossain, M.B.; Akther, S.; Alsubaie, A.; Almalki, A.S.A.; Bradley, D.A. Levels and Health Risk Assessment of Heavy Metals in Dried Fish Consumed in Bangladesh. Sci. Rep. 2021, 11, 14642. [Google Scholar] [CrossRef]
- Naz, S.; Hussain, R.; Ullah, Q.; Chatha, A.M.M.; Shaheen, A.; Khan, R.U. Toxic Effect of Some Heavy Metals on Hematology and Histopathology of Major Carp (Catla catla). Environ. Sci. Pollut. Res. 2021, 28, 6533–6539. [Google Scholar] [CrossRef] [PubMed]
- Bauerová, P.; Krajzingrová, T.; Těšický, M.; Velová, H.; Hraníček, J.; Musil, S.; Svobodová, J.; Albrecht, T.; Vinkler, M. Longitudinally Monitored Lifetime Changes in Blood Heavy Metal Concentrations and Their Health Effects in Urban Birds. Sci. Total Environ. 2020, 723, 138002. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Ma, L.; Yi, Y.; Lin, T. Assessment of Heavy Metal Pollution and Exposure Risk for Migratory Birds—A Case Study of Caohai Wetland in Guizhou Plateau (China). Environ. Pollut. 2021, 275, 116564. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2019, 30, 167–176. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Shams, M.; Tavakkoli Nezhad, N.; Dehghan, A.; Alidadi, H.; Paydar, M.; Mohammadi, A.A.; Zarei, A. Heavy Metals Exposure, Carcinogenic and Non-Carcinogenic Human Health Risks Assessment of Groundwater around Mines in Joghatai, Iran. Int. J. Environ. Anal. Chem. 2020, 102, 1884–1899. [Google Scholar] [CrossRef]
- Rather, M.I.; Rashid, I.; Shahi, N.; Murtaza, K.O.; Hassan, K.; Yousuf, A.R.; Romsho, S.A.; Shah, I.Y. Massive Land System Changes Impact Water Quality of the Jhelum River in Kashmir Himalaya. Environ. Monit. Assess. 2016, 188, 185. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.H.; Shahid, N.; Qadir, A.; Ahmad, S.R.; Sarwar, S.; Ashraf, M.R.; Masood, N. Hydrological and Ichthyological Impact Assessment of Rasul Barrage, River Jhelum, Pakistan. Pol. J. Environ. Stud. 2017, 26, 107–114. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Shafiq-ur-Rehman, A.R.; Ganie, S.A. Spatio-Temporal Changes in Water Quality of Jhelum River, Kashmir Himalaya. Int. J. Environ. Bioenergy 2017, 12, 1–29. [Google Scholar]
- Shokr, E.-S.A. Effect of Ammonia Stress on Blood Constitutes in Nile Tilapia. Egypt. Acad. J. Biol. Sci. B Zool. 2015, 7, 37–44. [Google Scholar] [CrossRef]
- Vosylienė, M.Z. The Effect of Heavy Metals on Haematological Indices of Fish (Survey). Acta Zool. Litu. 1999, 9, 76–82. [Google Scholar] [CrossRef]
- Liao, J.; Chen, J.; Ru, X.; Chen, J.; Wu, H.; Wei, C. Heavy Metals in River Surface Sediments Affected with Multiple Pollution Sources, South China: Distribution, Enrichment and Source Apportionment. J. Geochem. Explor. 2017, 176, 9–19. [Google Scholar] [CrossRef]
- Vali, S.; Majidiyan, N.; Azadikhah, D.; Varcheh, M.; Tresnakova, N.; Faggio, C. Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water 2022, 14, 1357. [Google Scholar] [CrossRef]
- Ishaq, S.; Jabeen, G.; Arshad, M.; Kanwal, Z.; Nisa, F.U.; Zahra, R.; Shafiq, Z.; Ali, H.; Samreen, K.B.; Manzoor, F. Heavy metal toxicity arising from the industrial effluents repercussions on oxidative stress, liver enzymes and antioxidant activity in brain homogenates of Oreochromis niloticus. Sci. Rep. 2023, 13, 19936. [Google Scholar] [CrossRef]
- Ahmad, K.; Azizullah, A.; Shama, S.; Khan Khattak, M.N. Determination of Heavy Metal Contents in Water, Sediments, and Fish Tissues of Shizothorax plagiostomus in River Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Environ. Monit. Assess. 2014, 186, 7357–7366. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasawi, Z.; Hassanine, R. Effect of Heavy Metal Pollution on the Blood Biochemical Parameters and Liver Histology of the Lethrinid Fish, Lethrinus harak from the Red Sea. Pak. J. Zool. 2022, 55, 1–8. [Google Scholar] [CrossRef]
- Staniskiene, B.; Matusevicius, P.; Budreckiene, R.; Skibniewska, K.A. Distribution of Heavy Metals in Tissues of Freshwater Fish in Lithuania. Polish J. Environ. Stud. 2006, 15, 585–591. [Google Scholar]
- Ullah, S.; Li, Z.; Hassan, S.; Ahmad, S.; Guo, X.; Wanghe, K.; Nabi, G. Heavy Metals Bioaccumulation and Subsequent Multiple Biomarkers Based Appraisal of Toxicity in the Critically Endangered Tor putitora. Ecotoxicol. Environ. Saf. 2021, 228, 113032. [Google Scholar] [CrossRef] [PubMed]
- Pelić, M.; Mihaljev, Ž.; Živkov Baloš, M.; Popov, N.; Gavrilović, A.; Jug-Dujaković, J.; Ljubojević Pelić, D. Health Risks Associated with the Concentration of Heavy Metals in Sediment, Water, and Carp Reared in Treated Wastewater from a Slaughterhouse. Water 2023, 16, 94. [Google Scholar] [CrossRef]
- NJDHSS New Jersey Department of Health and Senior Services. Hazardous Substances Fact Sheet: Cobalt; NJDHSS New Jersey Department of Health and Senior Services: Trenton, NJ, USA, 2005.
- Singh, N.; Kumar, D.; Sahu, A.P. Arsenic in the Environment: Effects on Human Health and Possible Prevention. J. Environ. Biol. 2007, 28, 359. [Google Scholar]
- Martin, S.; Grisworld, W. Human Health Effects of Heavy Metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Review of Human Carcinogens: Metals, Arsenic, Dusts and Fibres; World Health Organization: Geneva, Switzerland, 2012; ISBN 9283213203. [Google Scholar]
- Goyer, R.; Golu, M.; Choudhury, H.; Hughes, M.; Kenyon, E.; Stifelman, M. Issue Paper on the Human Health Effects of Metals; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- Witeska, M.; Kondera, E.; Bojarski, B. Hematological and Hematopoietic Analysis in Fish Toxicology—A Review. Animals 2023, 13, 2625. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.; Ahmad, I.; Ahmad, A.; Usmani, N.; Ahmad, M. Studies on the Alterations in Haematological Indices, Micronuclei Induction and Pathological Marker Enzyme Activities in Channa punctatus (Spotted Snakehead) Perciformes, Channidae Exposed to Thermal Power Plant Effluent. SpringerPlus 2016, 5, 761. [Google Scholar] [CrossRef]
- Joshp, P.K.; Bose, M.; Harish, D. Changes in Certain Haematological Parameters in a Siluroid Cat Fish Clarias batrachus (Linn) Exposed to Cadmium Chloride. Pollut. Res. 2002, 21, 129–131. [Google Scholar]
- Suchana, S.A.; Ahmed, M.S.; Islam, S.M.M.; Rahman, M.L.; Rohani, M.F.; Ferdusi, T.; Ahmmad, A.K.S.; Fatema, M.K.; Badruzzaman, M.; Shahjahan, M. Chromium Exposure Causes Structural Aberrations of Erythrocytes, Gills, Liver, Kidney, and Genetic Damage in Striped Catfish Pangasianodon hypophthalmus. Biol. Trace Elem. Res. 2021, 199, 3869–3885. [Google Scholar] [CrossRef]
- Barathinivas, A.; Ramya, S.; Neethirajan, K.; Jayakumararaj, R.; Pothiraj, C.; Balaji, P.; Faggio, C. Ecotoxicological Effects of Pesticides on Hematological Parameters and Oxidative Enzymes in Freshwater Catfish, Mystus keletius. Sustainability 2022, 14, 9529. [Google Scholar] [CrossRef]
- Saha, S.; Dhara, K.; Chukwuka, A.V.; Pal, P.; Saha, N.C.; Faggio, C. Sub-Lethal Acute Effects of Environmental Concentrations of Inorganic Mercury on Hematological and Biochemical Parameters in Walking Catfish, Clarias batrachus. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 264, 109511. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Monier, M.N.; Hoseinifar, S.H.; Faggio, C. Fish Response to Hypoxia Stress: Growth, Physiological, and Immunological Biomarkers. Fish Physiol. Biochem. 2019, 45, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Parekh, H.M.; Tank, S.K. Studies of Haematological Parameters of Oreochromis niloticus Exposed to Cadmium Chloride (CdCl2, 2H2O). Int. J. Environ. 2015, 4, 116–127. [Google Scholar] [CrossRef]
- Dos Santos, C.R.; Cavalcante, A.L.M.; Hauser-Davis, R.A.; Lopes, R.M.; Da Costa Mattos, R.D.C.O. Effects of Sub-Lethal and Chronic Lead Concentrations on Blood and Liver ALA-D Activity and Hematological Parameters in Nile Tilapia. Ecotoxicol. Environ. Saf. 2016, 129, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Langer, S. Effect of Manganese on Haematological Parameters of Fish, Garra gotyla gotyla. J. Entomol. Zool. Stud. 2014, 2, 77–81. [Google Scholar]
- Pichhode, M.; Gaherwal, S. Toxicological Effects of Arsenic Trioxide Exposure on Haematolical Profile in Catfish, Clarias batrachus. Int. J. Curr. Res. Rev. 2019, 11, 9–12. [Google Scholar] [CrossRef]
- Ramesh, P.; Ramachandra Mohan, M. Effects of Cadmium Chloride on Hematological Profiles in Freshwater Fish Channa punctatus (Bloch). Environ. Ecol. 2021, 39, 1096–1101. [Google Scholar]
- Yaghoobi, Z.; Safahieh, A.; Ronagh, M.T.; Movahedinia, A.; Mousavi, S.M. Hematological Changes in Yellowfin Seabream (Acanthopagrus latus) Following Chronic Exposure to Bisphenol A. Comp. Clin. Path. 2017, 26, 1305–1313. [Google Scholar] [CrossRef]
- Çelik, E.Ş.; Kaya, H.; Yilmaz, S.; Akbulut, M.; Tulgar, A. Effects of Zinc Exposure on the Accumulation, Haematology and Immunology of Mozambique Tilapia, Oreochromis mossambicus. Afr. J. Biotechnol. 2013, 12, 744–753. [Google Scholar]
- Shahzadi, K. Effect of Lead on Hematological Parameters and Serum Biochemistry of Bighead Carp (Hypophthalmycthys nobilis). Adv. Soc. Sci. Manag. 2023, 1, 73–79. [Google Scholar]
- Jha, D.K.; Mishra, B.B.; Thakur, K.R.; Kumar, V.; Verma, P.; Khan, P.K. Toxicological Effects of Arsenic Exposure on Haematology of Fresh Water Fish Channa punctatus. Der Pharma Chem. 2017, 9, 1–5. [Google Scholar]
- Kumar, R.; Banerjee, T.K. Arsenic Induced Hematological and Biochemical Responses in Nutritionally Important Catfish Clarias batrachus (L.). Toxicol. Rep. 2016, 3, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Verma, A.K. Effect of Arsenic on Serum Biochemical Parameters of a Fresh Water Cat Fish, Mystus vittatus. Int. J. Biol. Innov. 2020, 2, 11–19. [Google Scholar] [CrossRef]
- Schuijt, L.M.; Peng, F.-J.; van den Berg, S.J.P.; Dingemans, M.M.L.; Van den Brink, P.J. (Eco)Toxicological Tests for Assessing Impacts of Chemical Stress to Aquatic Ecosystems: Facts, Challenges, and Future. Sci. Total Environ. 2021, 795, 148776. [Google Scholar] [CrossRef] [PubMed]
- Janz, D.M. Biomarkers in Fish Ecotoxicology BT—Encyclopedia of Aquatic Ecotoxicology; Férard, J.-F., Blaise, C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 211–220. ISBN 978-94-007-5704-2. [Google Scholar]
- Alkaladi, A.; El-Deen, N.A.M.N.; Afifi, M.; Zinadah, O.A.A. Hematological and Biochemical Investigations on the Effect of Vitamin E and C on Oreochromis niloticus Exposed to Zinc Oxide Nanoparticles. Saudi J. Biol. Sci. 2015, 22, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Demeke, A.; Tassew, A. A Review on Water Quality and Its Impact on Fish Health. Int. J. Fauna Biol. Stud. 2016, 3, 21–31. [Google Scholar]
- Kausar, F.; Aiman, U.; Qadir, A.; Ahmad, S.R. Assessment of Fish Assemblage in Highly Human Managed Reservoirs Located on River Chenab. J. Biodivers. Endanger Species 2018, 6, 2. [Google Scholar] [CrossRef]
- Sandre, L.C.G.; Buzollo, H.; Neira, L.M.; Nascimento, T.M.T.; Jomori, R.K.; Carneiro, D.J. Growth and Energy Metabolism of Tambaqui (Colossoma macropomum) Fed Diets with Different Levels of Carbohydrates and Lipids. Fish. Aquac. J. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Shaheen, T.; Akhtar, T. Assessment of Chromium Toxicity in Cyprinus carpio through Hematological and Biochemical Blood Markers. Turk. J. Zool. 2012, 36, 682–690. [Google Scholar] [CrossRef]
- Bakshi, A.; Panigrahi, A.K. A Comprehensive Review on Chromium Induced Alterations in Fresh Water Fishes. Toxicol. Rep. 2018, 5, 440–447. [Google Scholar] [CrossRef]
- Osman, H.A.M.; Ismaiel, M.M.; Abbas, T.W.; Ibrahim, T.B. An Approach to the Interaction between Trichodiniasis and Pollution with Benzo-Apyrene in Catfish (Clarias gariepinus). World J. Fish Mar. Sci. 2009, 1, 283–289. [Google Scholar]
- Perumalsamy, N.; Arumugam, K. Enzymes Activity in Fish Exposed to Heavy Metals and the Electro-Plating Effluent at Sub-Lethal Concentrations. Water Qual. Expo. Health 2013, 5, 93–101. [Google Scholar] [CrossRef]
- Hadi, A.; Shokr, A.; Alwan, S. Effects of Aluminum on the Biochemical Parameters of Fresh Waterfish Tilapia Zillii. J. Sci. Appl 2009, 3, 33–41. [Google Scholar]
- Öner, M.; Atli, G.; Canli, M. Changes in Serum Biochemical Parameters of Freshwater Fish Oreochromis niloticus Following Prolonged Metal (Ag, Cd, Cr, Cu, Zn) Exposures. Environ. Toxicol. Chem. 2008, 27, 360–366. [Google Scholar] [CrossRef]
- Tabat, J.L.; Jehu, A.; Kogi, E.; Habila, J.D. Sublethal Toxicity Effects of Cadmium (Cd2+) on Serum Biochemistry in Fingerlings and Juveniles of Fresh Water Catfish, Clarias gariepinus (Burchell, 1822). Int. J. Fish. Aquat. Stud 2021, 9, 1–6. [Google Scholar]
Bagre marinus | Bagarius bagarius | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HMs | Upstream (X ± SE) | Downstream (X ± SE) | Upstream (X ± SE) | Downstream (X ± SE) | ||||||||
Liver | Muscles | Gills | Liver | Muscles | Gills | Liver | Muscles | Gills | Liver | Muscles | Gills | |
Zn | 0.007 ± 0.002 | 0.004 ± 0.002 | 0.007 ± 0.003 | 0.054 ± 0.005 | 0.033 ± 0.001 | 0.073 ± 0.007 | 0.006 ± 0.001 | 0.007 ± 0.003 | 0.016 ± 0.004 | 0.024 ± 0.002 | 0.025 ± 0.004 | 0.025 ± 0.004 |
Pb | 0.050 ± 0.002 | 0.041 ± 0.000 | 0.052 ± 0.000 | 0.445 ± 0.010 | 0.149 ± 0.001 | 0.233 ± 0.010 | 0.142 ± 0.025 | 0.110 ± 0.007 | 0.100 ± 0.008 | 0.240 ± 0.023 | 0.168 ± 0.018 | 0.139 ± 0.007 |
Cd | 0.257 ± 0.017 | 0.102 ± 0.001 | 0.112 ± 0.012 | 0.070 ± 0.002 | 0.054 ± 0.004 | 0.068 ± 0.011 | 0.109 ± 0.006 | 0.042 ± 0.007 | 0.034 ± 0.004 | 0.144 ± 0.024 | 0.092 ± 0.022 | 0.053 ± 0.001 |
Cr | 0.463 ± 0.015 | 1.043 ± 0.024 | 0.483 ± 0.018 | 0.530 ± 0.004 | 1.115 ± 0.042 | 0.751 ± 0.021 | 0.359 ± 0.030 | 0.859 ± 0.054 | 0.953 ± 0.047 | 1.011 ± 0.032 | 1.248 ± 0.039 | 1.248 ± 0.037 |
Co | 0.401 ± 0.007 | 0.312 ± 0.018 | 0.369 ± 0.018 | 0.444 ± 0.010 | 0.396 ± 0.008 | 0.407 ± 0.012 | 0.290 ± 0.030 | 0.340 ± 0.028 | 0.323 ± 0.022 | 0.393 ± 0.001 | 0.421 ± 0.032 | 0.411 ± 0.015 |
Ni | 0.320 ± 0.011 | 0.352 ± 0.007 | 0.388 ± 0.018 | 0.409 ± 0.015 | 0.437 ± 0.016 | 0.444 ± 0.018 | 0.378 ± 0.023 | 0.974 ± 0.027 | 0.484 ± 0.027 | 0.444 ± 0.021 | 1.054 ± 0.032 | 0.859 ± 0.056 |
Mn | 0.130 ± 0.009 | 0.283 ± 0.009 | 1.290 ± 0.068 | 0.187 ± 0.012 | 0.449 ± 0.015 | 2.210 ± 0.101 | 0.138 ± 0.006 | 0.445 ± 0.040 | 2.229 ± 0.065 | 0.207 ± 0.035 | 0.647 ± 0.037 | 2.592 ± 0.062 |
Fe | 4.130 ± 0.360 | 0.934 ± 0.018 | 1.528 ± 0.072 | 1.720 ± 0.140 | 1.175 ± 0.007 | 1.370 ± 0.086 | 2.301 ± 0.092 | 0.970 ± 0.041 | 2.581 ± 0.061 | 2.938 ± 0.222 | 1.333 ± 0.051 | 2.882 ± 0.053 |
Cu | 1.247 ± 0.034 | 1.139 ± 0.016 | 1.235 ± 0.027 | 9.515 ± 0.290 | 1.025 ± 0.033 | 2.820 ± 0.095 | 1.083 ± 0.034 | 1.087 ± 0.040 | 1.341 ± 0.074 | 1.303 ± 0.054 | 1.192 ± 0.030 | 1.664 ± 0.067 |
Mg | 4.737 ± 0.175 | 7.835 ± 0.163 | 8.735 ± 0.486 | 5.278 ± 0.146 | 9.591 ± 0.187 | 9.913 ± 0.228 | 6.899 ± 0.183 | 10.752 ± 0.324 | 12.011 ± 0.763 | 7.959 ± 0.219 | 11.728 ± 0.390 | 14.403 ± 0.492 |
Ca | 2.984 ± 0.105 | 9.163 ± 0.258 | 13.471 ± 0.606 | 3.368 ± 0.158 | 11.821 ± 0.363 | 16.595 ± 0.647 | 2.124 ± 0.062 | 10.603 ± 0.476 | 14.156 ± 0.734 | 3.649 ± 0.124 | 13.419 ± 0.396 | 17.473 ± 0.362 |
As | 0.279 ± 0.012 | 0.248 ± 0.014 | 0.271 ± 0.013 | 0.364 ± 0.015 | 0.338 ± 0.018 | 0.343 ± 0.020 | 0.335 ± 0.027 | 0.328 ± 0.023 | 0.293 ± 0.033 | 0.565 ± 0.017 | 0.462 ± 0.029 | 0.419 ± 0.039 |
Zn | Pb | Ni | Mn | Mg | Fe | Cu | Cr | Co | Cd | Ca | As | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | 1 | |||||||||||
Pb | 0.690 | 1 | ||||||||||
Ni | −0.968 | −0.815 | 1 | |||||||||
Mn | −0.963 | −0.574 | 0.929 | 1 | ||||||||
Mg | −0.971 | −0.813 | 0.997 | 0.927 | 1 | |||||||
Fe | 0.518 | 0.932 | −0.670 | −0.354 | −0.676 | 1 | ||||||
Cu | −0.978 | −0.742 | 0.982 | 0.974 | 0.982 | −0.546 | 1 | |||||
Cr | −0.979 | −0.795 | 0.996 | 0.928 | 0.998 | −0.663 | 0.978 | 1 | ||||
Co | −0.958 | −0.799 | 0.969 | 0.930 | 0.980 | −0.620 | 0.985 | 0.971 | 1 | |||
Cd | −0.922 | −0.718 | 0.951 | 0.869 | 0.934 | −0.627 | 0.899 | 0.948 | 0.850 | 1 | ||
Ca | −0.948 | −0.805 | 0.990 | 0.941 | 0.981 | −0.626 | 0.986 | 0.975 | 0.968 | 0.922 | 1 | |
As | −0.875 | −0.771 | 0.929 | 0.914 | 0.917 | −0.543 | 0.953 | 0.900 | 0.935 | 0.820 | 0.972 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheen, M.; Ullah, S.; Bilal, M.; Muneeb, A.; Yurdakok-Dikmen, B.; Faggio, C. Determination of Heavy Metals and Hemato-Biochemical Profiling of Bagre marinus and Bagarius bagarius in Jhelum River. Water 2024, 16, 3603. https://doi.org/10.3390/w16243603
Shaheen M, Ullah S, Bilal M, Muneeb A, Yurdakok-Dikmen B, Faggio C. Determination of Heavy Metals and Hemato-Biochemical Profiling of Bagre marinus and Bagarius bagarius in Jhelum River. Water. 2024; 16(24):3603. https://doi.org/10.3390/w16243603
Chicago/Turabian StyleShaheen, Muneeba, Sana Ullah, Muhammad Bilal, Ahmed Muneeb, Begum Yurdakok-Dikmen, and Caterina Faggio. 2024. "Determination of Heavy Metals and Hemato-Biochemical Profiling of Bagre marinus and Bagarius bagarius in Jhelum River" Water 16, no. 24: 3603. https://doi.org/10.3390/w16243603
APA StyleShaheen, M., Ullah, S., Bilal, M., Muneeb, A., Yurdakok-Dikmen, B., & Faggio, C. (2024). Determination of Heavy Metals and Hemato-Biochemical Profiling of Bagre marinus and Bagarius bagarius in Jhelum River. Water, 16(24), 3603. https://doi.org/10.3390/w16243603