Methane Production Mechanism and Control Strategies for Sewers: A Critical Review
Abstract
:1. Introduction
2. How Is CH4 Produced?
3. Factors That Impact CH4 Production in Sewers
3.1. Water Quality
3.1.1. COD/SO42−
3.1.2. Temperature
3.1.3. DO
3.1.4. pH
3.2. Hydrodynamic and Mass Transfer Factors
3.2.1. Flow Velocity
3.2.2. HRT
4. Model Evaluation for CH4 Production in Sewers
4.1. Empirical Model
4.2. Mechanistic Model
4.3. Machine Learning Model
5. Removal of and Reduction in CH4 in Urban Sewer Systems
5.1. Oxygen Introduction
5.2. Iron Salt Dosing
5.3. Nitrogen-Related Dosing
5.3.1. Nitrate
5.3.2. FNA
5.4. Mixed Agent Dosing
6. Prospects and Development
6.1. Integrated Model Development
6.2. Integrated Use of Sewer-Dosed Chemicals in Urban Wastewater Systems
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate Tipping Points —Too Risky to Bet Against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, H.; Yin, W.; Wang, Y.; Lv, J.; Wang, A. Deciphering Carbon Emissions in Urban Sewer Networks: Bridging Urban Sewer Networks with City-Wide Environmental Dynamics. Water Res. 2024, 256, 121576. [Google Scholar] [CrossRef]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, U.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane Emission during Municipal Wastewater Treatment. Water Res. 2012, 46, 3657–3670. [Google Scholar] [CrossRef]
- Short, M.D.; Daikeler, A.; Wallis, K.; Peirson, W.L.; Peters, G.M. Dissolved Methane in the Influent of Three Australian Wastewater Treatment Plants Fed by Gravity Sewers. Sci. Total Environ. 2017, 599–600, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Shi, X.; Chi, Y.; Ren, T.; Jin, X.; Wang, X.C.; Jin, P. A Comprehensive Assessment of Fungi in Urban Sewer Biofilms: Community Structure, Environmental Factors, and Symbiosis Patterns. Sci. Total Environ. 2022, 806, 150728. [Google Scholar] [CrossRef]
- Zheng, T.; Li, W.; Ma, Y.; Liu, J. Time-Based Succession Existed in Rural Sewer Biofilms: Bacterial Communities, Sulfate-Reducing Bacteria and Methanogenic Archaea, and Sulfide and Methane Generation. Sci. Total Environ. 2021, 765, 144397. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Liu, S.; Yin, W.-X.; Gan, L.-L.; Pang, H.-T.; Lv, J.-Q.; Liu, Y.; Wang, H.-C. Machine Learning for High-Precision Simulation of Dissolved Organic Matter in Sewer: Overcoming Data Restrictions with Generative Adversarial Networks. Sci. Total Environ. 2024, 947, 174469. [Google Scholar] [CrossRef]
- Guisasola, A.; Sharma, K.R.; Keller, J.; Yuan, Z. Development of a Model for Assessing Methane Formation in Rising Main Sewers. Water Res. 2009, 43, 2874–2884. [Google Scholar] [CrossRef]
- Yongsiri, C.; Hvitved-Jacobsen, T.; Vollertsen, J.; Tanaka, N. Introducing the Emission Process of Hydrogen Sulfide to a Sewer Process Model (WATS). Water Sci. Technol. 2003, 47, 85–92. [Google Scholar] [CrossRef]
- Liang, Z.-S.; Zhang, L.; Wu, D.; Chen, G.-H.; Jiang, F. Systematic Evaluation of a Dynamic Sewer Process Model for Prediction of Odor Formation and Mitigation in Large-Scale Pressurized Sewers in Hong Kong. Water Res. 2019, 154, 94–103. [Google Scholar] [CrossRef]
- Xu, R.-Z.; Cao, J.-S.; Ye, T.; Wang, S.-N.; Luo, J.-Y.; Ni, B.-J.; Fang, F. Automated Machine Learning-Based Prediction of Microplastics Induced Impacts on Methane Production in Anaerobic Digestion. Water Res. 2022, 223, 118975. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, L.; Hong, J.; Sun, J.; Jiang, F. Different Ferric Dosing Strategies Could Result in Different Control Mechanisms of Sulfide and Methane Production in Sediments of Gravity Sewers. Water Res. 2019, 164, 114914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; De Schryver, P.; De Gusseme, B.; De Muynck, W.; Boon, N.; Verstraete, W. Chemical and Biological Technologies for Hydrogen Sulfide Emission Control in Sewer Systems: A Review. Water Res. 2008, 42, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Deng, Y.; Shao, B.; Zhu, J.; Hu, Z.; Guan, X. Three Kinetic Patterns for the Oxidation of Emerging Organic Contaminants by Fe(VI): The Critical Roles of Fe(V) and Fe(IV). Environ. Sci. Technol. 2021, 55, 11338–11347. [Google Scholar] [CrossRef]
- Zuo, Z.; Xing, Y.; Liu, T.; Zheng, M.; Lu, X.; Chen, Y.; Jiang, G.; Liang, P.; Huang, X.; Liu, Y. Methane Mitigation via the Nitrite-DAMO Process Induced by Nitrate Dosing in Sewers. Water Res. 2024, 257, 121701. [Google Scholar] [CrossRef]
- Rebosura, M.; Salehin, S.; Pikaar, I.; Sun, X.; Keller, J.; Sharma, K.; Yuan, Z. A Comprehensive Laboratory Assessment of the Effects of Sewer-Dosed Iron Salts on Wastewater Treatment Processes. Water Res. 2018, 146, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Hu, C.; Zhang, D.; Dai, L.; Duan, N. Impact of a High Ammonia-Ammonium-pH System on Methane-Producing Archaea and Sulfate-Reducing Bacteria in Mesophilic Anaerobic Digestion. Bioresour. Technol. 2017, 245, 598–605. [Google Scholar] [CrossRef]
- Ren, D.; Zuo, Z.; Xing, Y.; Ji, P.; Yu, T.; Zhu, D.; Liu, Y.; Huang, X. Simultaneous Control of Sulfide and Methane in Sewers Achieved by a Physical Approach Targeting Dominant Active Zone in Sediments. Water Res. 2022, 211, 118010. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, J.-J.; May, H.D.; Song, C.; Jiang, J.; Du, L.; Ren, Z.J. Methanogenic Potential of Sewer Microbiomes and Its Implications for Methane Emission. Environ. Sci. Technol. 2024, 58, 19990–19998. [Google Scholar] [CrossRef]
- Zuo, Z.; Song, Y.; Ren, D.; Li, H.; Gao, Y.; Yuan, Z.; Huang, X.; Zheng, M.; Liu, Y. Control Sulfide and Methane Production in Sewers Based on Free Ammonia Inactivation. Environ. Int. 2020, 143, 105928. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Ma, Y.; Liu, J. Characteristics of Sewer Biofilms in Aerobic Rural Small Diameter Gravity Sewers. J. Environ. Sci. 2020, 90, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, H.; Phelan, S.; Liyanaarachchi, S.; Marleni, N.; Navaratna, D.; Jegatheesan, V.; Shu, L. Mitigation Strategies of Hydrogen Sulphide Emission in Sewer Networks—A Review. Int. Biodeterior. Biodegrad. 2014, 95, 251–261. [Google Scholar] [CrossRef]
- McMahon, K.D.; Zheng, D.; Stams, A.J.M.; Mackie, R.I.; Raskin, L. Microbial Population Dynamics during Start-up and Overload Conditions of Anaerobic Digesters Treating Municipal Solid Waste and Sewage Sludge. Biotechnol. Bioeng. 2004, 87, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ye, J.; Zhou, Y.; Wang, Z.; Jia, Q.; Nie, Y.; Li, L.; Liu, H.; Benoit, G. Variations in CH4 and CO2 Productions and Emissions Driven by Pollution Sources in Municipal Sewers: An Assessment of the Role of Dissolved Organic Matter Components and Microbiota. Environ. Pollut. 2020, 263, 114489. [Google Scholar] [CrossRef]
- Liu, Y.; Tugtas, A.E.; Sharma, K.R.; Ni, B.-J.; Yuan, Z. Sulfide and Methane Production in Sewer Sediments: Field Survey and Model Evaluation. Water Res. 2016, 89, 142–150. [Google Scholar] [CrossRef]
- Sudarjanto, G.; Sharma, K.R.; Gutierrez, O.; Yuan, Z. A Laboratory Assessment of the Impact of Brewery Wastewater Discharge on Sulfide and Methane Production in a Sewer. Water Sci. Technol. 2011, 64, 1614–1619. [Google Scholar] [CrossRef]
- Liu, Y.; Sharma, K.R.; Fluggen, M.; O’Halloran, K.; Murthy, S.; Yuan, Z. Online Dissolved Methane and Total Dissolved Sulfide Measurement in Sewers. Water Res. 2015, 68, 109–118. [Google Scholar] [CrossRef]
- Xu, J.; He, Q.; Li, H.; Yang, C.; Wang, Y.; Ai, H. Modeling of Methane Formation in Gravity Sewer System: The Impact of Microorganism and Hydraulic Condition. AMB Expr. 2018, 8, 34. [Google Scholar] [CrossRef]
- Gutierrez, O.; Sudarjanto, G.; Ren, G.; Ganigué, R.; Jiang, G.; Yuan, Z. Assessment of pH Shock as a Method for Controlling Sulfide and Methane Formation in Pressure Main Sewer Systems. Water Res. 2014, 48, 569–578. [Google Scholar] [CrossRef]
- McCartney, D.M.; Oleszkiewicz, J.A. Competition between Methanogens and Sulfate Reducers: Effect of COD:Sulfate Ratio and Acclimation. Water Environ. Res. 1993, 65, 655–664. [Google Scholar] [CrossRef]
- Choi, E.; Rim, J.M. Competition and Inhibition of Sulfate Reducers and Methane Producers in Anaerobic Treatment. Water Sci. Technol. 1991, 23, 1259–1264. [Google Scholar] [CrossRef]
- Yoda, M.; Kitagawa, M.; Miyaji, Y. Long Term Competition between Sulfate-Reducing and Methane-Producing Bacteria for Acetate in Anaerobic Biofilm. Water Res. 1987, 21, 1547–1556. [Google Scholar] [CrossRef]
- St. Louis, V.L.; Kelly, C.A.; Duchemin, É.; Rudd, J.W.M.; Rosenberg, D.M. Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience 2000, 50, 766. [Google Scholar] [CrossRef]
- Brooks Avery, G.; Shannon, R.D.; White, J.R.; Martens, C.S.; Alperin, M.J. Controls on Methane Production in a Tidal Freshwater Estuary and a Peatland: Methane Production via Acetate Fermentation and CO2 Reduction. Biogeochemistry 2003, 62, 19–37. [Google Scholar] [CrossRef]
- Sun, J.; Hu, S.; Sharma, K.R.; Ni, B.-J.; Yuan, Z. Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms. Appl. Environ. Microbiol. 2014, 80, 7042–7052. [Google Scholar] [CrossRef]
- Jin, P.; Shi, X.; Sun, G.; Yang, L.; Cai, Y.; Wang, X.C. Co-Variation between Distribution of Microbial Communities and Biological Metabolization of Organics in Urban Sewer Systems. Environ. Sci. Technol. 2018, 52, 1270–1279. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Ma, Y.; Liu, J. Current Status and Future Prospects of Sewer Biofilms: Their Structure, Influencing Factors, and Substance Transformations. Sci. Total Environ. 2019, 695, 133815. [Google Scholar] [CrossRef]
- Gutierrez, O.; Park, D.; Sharma, K.R.; Yuan, Z. Effects of Long-Term pH Elevation on the Sulfate-Reducing and Methanogenic Activities of Anaerobic Sewer Biofilms. Water Res. 2009, 43, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Derlon, N.; Hu, S.; Yuan, Z. Modeling the pH Effect on Sulfidogenesis in Anaerobic Sewer Biofilm. Water Res. 2014, 49, 175–185. [Google Scholar] [CrossRef]
- Khan, A.W.; Trottier, T.M. Effect of Sulfur-Containing Compounds on Anaerobic Degradation of Cellulose to Methane by Mixed Cultures Obtained from Sewage Sludge. Appl. Environ. Microbiol. 1978, 35, 1027–1034. [Google Scholar] [CrossRef]
- Koster, I.W.; Rinzema, A.; de Vegt, A.L.; Lettinga, G. Sulfide Inhibition of the Methanogenic Activity of Granular Sludge at Various pH-Levels. Water Res. 1986, 20, 1561–1567. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, K.; La Motta, E.J.; McCorquodale, J.A.; Rojas, S.; Ermogenous, M. Effect of Biofilm Formation on Roughness Coefficient and Solids Deposition in Small-Diameter PVC Sewer Pipes. J. Environ. Eng. 2007, 133, 364–371. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Liu, H.; Nie, Y.; Zhu, Y.; Jia, Q.; Ding, G.; Ye, J. Variable Sediment Methane Production in Response to Different Source-Associated Sewer Sediment Types and Hydrological Patterns: Role of the Sediment Microbiome. Water Res. 2021, 190, 116670. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ni, B.-J.; Ganigué, R.; Werner, U.; Sharma, K.R.; Yuan, Z. Sulfide and Methane Production in Sewer Sediments. Water Res. 2015, 70, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Xie, H.; Qi, P.; Ren, Y.; Hu, Z. Methane Emissions from a Full-Scale A/A/O Wastewater Treatment Plant. Bioresour. Technol. 2011, 102, 5479–5485. [Google Scholar] [CrossRef]
- Nicolella, C.; Di Felice, R.; Rovatti, M. An Experimental Model of Biofilm Detachment in Liquid Fluidized Bed Biological Reactors. Biotechnol. Bioeng. 1996, 51, 713–719. [Google Scholar] [CrossRef]
- Chaosakul, T.; Koottatep, T.; Polprasert, C. A Model for Methane Production in Sewers. J. Environ. Sci. Health Part A 2014, 49, 1316–1321. [Google Scholar] [CrossRef]
- Liu, Y.; Ni, B.-J.; Sharma, K.R.; Yuan, Z. Methane Emission from Sewers. Sci. Total Environ. 2015, 524–525, 40–51. [Google Scholar] [CrossRef]
- Sun, J.; Hu, S.; Sharma, K.R.; Bustamante, H.; Yuan, Z. Impact of Reduced Water Consumption on Sulfide and Methane Production in Rising Main Sewers. J. Environ. Manag. 2015, 154, 307–315. [Google Scholar] [CrossRef]
- Xu, X.; Bingemer, H.G.; Schmidt, U. An Empirical Model for Estimating the Concentration of Carbonyl Sulfide in Surface Seawater from Satellite Measurements. Geophys. Res. Lett. 2002, 29, 30–31. [Google Scholar] [CrossRef]
- Foley, J.; Yuan, Z.; Lant, P. Dissolved Methane in Rising Main Sewer Systems: Field Measurements and Simple Model Development for Estimating Greenhouse Gas Emissions. Water Sci. Technol. 2009, 60, 2963–2971. [Google Scholar] [CrossRef] [PubMed]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Tanaka, N. An Integrated Aerobic/Anaerobic Approach for Prediction of Sulfide Formation in Sewers. Water Sci. Technol. 2000, 41, 107–115. [Google Scholar] [CrossRef]
- Sharma, K.R.; Yuan, Z.; De Haas, D.; Hamilton, G.; Corrie, S.; Keller, J. Dynamics and Dynamic Modelling of H2S Production in Sewer Systems. Water Res. 2008, 42, 2527–2538. [Google Scholar] [CrossRef] [PubMed]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, P.H. A Process and Model Concept for Microbial Wastewater Transformations in Gravity Sewers. Water Sci. Technol. 1998, 37, 233–241. [Google Scholar] [CrossRef]
- Vollertsen, J.; Hvitved-Jacobsen, T.; Tanaka, N. Wastewater Quality Changes during Transport in Sewers—An Integrated Aerobic and Anaerobic Model Concept for Carbon and Sulfur Microbial Transformations. Water Sci. Technol. 1999, 39, 233–249. [Google Scholar] [CrossRef]
- Abdul-Talib, S.; Hvitved-Jacobsen, T.; Vollertsen, J.; Ujang, Z. Anoxic Transformations of Wastewater Organic Matter in Sewers—Process Kinetics, Model Concept and Wastewater Treatment Potential. Water Sci. Technol. 2002, 45, 53–60. [Google Scholar] [CrossRef]
- Asnicar, F.; Passerini, A.; Waldron, L.; Segata, N. Machine Learning for Microbiologists. Nat. Rev. Microbiol. 2024, 22, 191–205. [Google Scholar] [CrossRef]
- Mehrdad, S.M.; Abbasi, M.; Yeganeh, B.; Kamalan, H. Prediction of Methane Emission from Landfills Using Machine Learning Models. Env. Prog. Sustain. Energy 2021, 40, e13629. [Google Scholar] [CrossRef]
- Selvanathan, K.; Ragu, K.; Yi, H.H.; Kazemi Yazdi, S.; Chen, Z.; Godary, R. Assessing Machine Learning Tools for Methane Emission Prediction from POME Treatment in Malaysia. J. Water Clim. Chang. 2023, 14, 2294–2308. [Google Scholar] [CrossRef]
- Liang, Z.; Xie, W.; Li, H.; Li, Y.; Jiang, F. Integrating Machine Learning Algorithm with Sewer Process Model to Realize Swift Prediction and Real-Time Control of H2S Pollution in Sewer Systems. Water Res. X 2024, 23, 100230. [Google Scholar] [CrossRef]
- Yordanova, S.; Petrova, R.; Noykova, N.; Tzvetkov, P. Neuro-Fuzzy Modelling in Anaerobic Wastewater Treatment for Prediction and Control. Int. J. Comput. 2014, 5, 51–56. [Google Scholar] [CrossRef]
- Lo Sciuto, G.; Susi, G.; Cammarata, G.; Capizzi, G. A Spiking Neural Network-Based Model for Anaerobic Digestion Process. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 22–24 June 2016; pp. 996–1003. [Google Scholar]
- Acosta, N.A.; Rodríguez Gómez, L.E.; Díaz, M.Á. Effect of Oxygen Injection in a Reclaimed Wastewater Pipeline on the Microbiological Quality of Water. Environ. Technol. 2012, 33, 497–505. [Google Scholar] [CrossRef]
- Madsen, H.I.; Hvitved-Jacobsen, T.; Vollertsen, J. Gas Phase Transport in Gravity Sewers—A Methodology for Determination of Horizontal Gas Transport and Ventilation. Water Environ. Res. 2006, 78, 2203–2209. [Google Scholar] [CrossRef]
- Ganigué, R.; Yuan, Z. Impact of Oxygen Injection on CH4 and N2O Emissions from Rising Main Sewers. J. Environ. Manag. 2014, 144, 279–285. [Google Scholar] [CrossRef]
- Hu, Z.; Li, L.; Cen, X.; Zheng, M.; Hu, S.; Wang, X.; Song, Y.; Xu, K.; Yuan, Z. Integrated Urban Water Management by Coupling Iron Salt Production and Application with Biogas Upgrading. Nat. Commun. 2023, 14, 6405. [Google Scholar] [CrossRef]
- Haaningnielsen, A.; Lens, P.; Vollertsen, J.; Hvitvedjacobsen, T. Sulfide–Iron Interactions in Domestic Wastewater from a Gravity Sewer. Water Res. 2005, 39, 2747–2755. [Google Scholar] [CrossRef] [PubMed]
- Utgikar, V.P.; Harmon, S.M.; Chaudhary, N.; Tabak, H.H.; Govind, R.; Haines, J.R. Inhibition of Sulfate-reducing Bacteria by Metal Sulfide Formation in Bioremediation of Acid Mine Drainage. Environ. Toxicol. 2002, 17, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Keller, J.; Yuan, Z. Inhibition of Sulfate-Reducing and Methanogenic Activities of Anaerobic Sewer Biofilms by Ferric Iron Dosing. Water Res. 2009, 43, 4123–4132. [Google Scholar] [CrossRef]
- Yan, X.; Sun, J.; Kenjiahan, A.; Dai, X.; Ni, B.-J.; Yuan, Z. Rapid and Strong Biocidal Effect of Ferrate on Sulfidogenic and Methanogenic Sewer Biofilms. Water Res. 2020, 169, 115208. [Google Scholar] [CrossRef]
- Yang, K.; Li, Z.; Zhang, H.; Qian, J.; Chen, G. Municipal Wastewater Phosphorus Removal by Coagulation. Environ. Technol. 2010, 31, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Sharma, K.R.; Yuan, Z. Effects of Nitrate Dosing on Methanogenic Activity in a Sulfide-Producing Sewer Biofilm Reactor. Water Res. 2013, 47, 1783–1792. [Google Scholar] [CrossRef]
- Tugtas, A.E.; Pavlostathis, S.G. Inhibitory Effects of Nitrogen Oxides on a Mixed Methanogenic Culture. Biotechnol. Bioeng. 2007, 96, 444–455. [Google Scholar] [CrossRef]
- Jiang, G.; Yuan, Z. Synergistic Inactivation of Anaerobic Wastewater Biofilm by Free Nitrous Acid and Hydrogen Peroxide. J. Hazard. Mater. 2013, 250–251, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Auguet, O.; Pijuan, M.; Guasch-Balcells, H.; Borrego, C.M.; Gutierrez, O. Implications of Downstream Nitrate Dosage in Anaerobic Sewers to Control Sulfide and Methane Emissions. Water Res. 2015, 68, 522–532. [Google Scholar] [CrossRef]
- Auguet, O.; Pijuan, M.; Borrego, C.M.; Gutierrez, O. Control of Sulfide and Methane Production in Anaerobic Sewer Systems by Means of Downstream Nitrite Dosage. Sci. Total Environ. 2016, 550, 1116–1125. [Google Scholar] [CrossRef]
- Jiang, G.; Gutierrez, O.; Sharma, K.R.; Keller, J.; Yuan, Z. Optimization of Intermittent, Simultaneous Dosage of Nitrite and Hydrochloric Acid to Control Sulfide and Methane Productions in Sewers. Water Res. 2011, 45, 6163–6172. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Zheng, M.; Chang, J.; Ren, D.; Huang, X.; Yuan, Z.; Liu, Y. Free Nitrous Acid-Based Suppression of Sulfide Production in Sewer Sediments: In-Situ Effect Mechanism. Sci. Total Environ. 2020, 715, 136871. [Google Scholar] [CrossRef]
- Jiang, G.; Gutierrez, O.; Yuan, Z. The Strong Biocidal Effect of Free Nitrous Acid on Anaerobic Sewer Biofilms. Water Res. 2011, 45, 3735–3743. [Google Scholar] [CrossRef]
- Jiang, G.; Keating, A.; Corrie, S.; O’halloran, K.; Nguyen, L.; Yuan, Z. Dosing Free Nitrous Acid for Sulfide Control in Sewers: Results of Field Trials in Australia. Water Res. 2013, 47, 4331–4339. [Google Scholar] [CrossRef]
- Lin, H.-W.; Lu, Y.; Ganigué, R.; Sharma, K.R.; Rabaey, K.; Yuan, Z.; Pikaar, I. Simultaneous Use of Caustic and Oxygen for Efficient Sulfide Control in Sewers. Sci. Total Environ. 2017, 601–602, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, G.; Zhou, Y.; Zhu, D.Z.; Zhang, Y.; Zhang, T. Simultaneous Use of Nitrate and Calcium Peroxide to Control Sulfide and Greenhouse Gas Emission in Sewers. Sci. Total Environ. 2023, 855, 158913. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-X.; Lv, J.-Q.; Liu, S.; Chen, J.-J.; Wei, J.; Ding, C.; Yuan, Y.; Bao, H.-X.; Wang, H.-C.; Wang, A.-J. Microbial-Guided Prediction of Methane and Sulfide Production in Sewers: Integrating Mechanistic Models with Machine Learning. Bioresour. Technol. 2025, 415, 131640. [Google Scholar] [CrossRef] [PubMed]
Category | Factor | Impact on CH4 Emissions | References |
---|---|---|---|
Water quality | COD/SO42− | This is an important factor in determining the result of competition between SRB and MA. When the C–S ratio is above 2.7, MA is dominant. | [31] |
T | The types and abundances of MA at different temperatures affect the metabolic rate and substrate supply of methanogen-related microorganisms. | [34] | |
DO | DO plays a key role in sewer systems, significantly influencing the metabolic activity of microbial communities and CH4 production. | [35] | |
pH | The optimal pH value for methanogenic bacteria growth is 7.0–7.5, and a too high or too low pH will inhibit the activity of methanogenic bacteria. | [38,39] | |
Hydrodynamic and mass transfer factors | V | Increasing sewage flow velocity boosts CH4 generation, but excessive velocity causes sediment suspension, stagnating CH4 production. | [25,44,45] |
HRT | In long-distance sewer lines, more CH4 is produced due to longer hydraulic residence time, and there is a significant correlation between the two. | [8] |
Category | Key Features | Applications | Advantages | Limitations | References |
---|---|---|---|---|---|
Empirical model | Based on historical data and empirical relationships | Used for quick estimation of methane production, suitable for preliminary analysis | Simple and easy to use, fast computation | Lower accuracy, limited applicability | [48,51,52] |
Mechanistic model | Based on physical and biochemical processes | Used to understand and predict microbial activity and methane production under various conditions | High interpretability, strong theoretical basis | Complex and requires detailed input data | [23,55,56,57] |
Machine learning model | Utilizes statistical and machine learning algorithms | Trains models with large datasets to improve prediction accuracy | Handles large datasets well, highly adaptable, and strong predictive power | May lack interpretability, requires significant data, and computational resources | [58,63] |
Additive | Dosing Level | Condition | Dosing Plan | Microorganism Inactivation (%) | CH4 Reduction Level (%) | Methane Production Recovery | Reference |
---|---|---|---|---|---|---|---|
Oxygen | 15–25 mg O2/L | Laboratory | Continuous | – | 47 | – | [66] |
Iron salts | 120 mg Fe(VI)/L | Laboratory | Shock for 1 h | 57 | – | – | [71] |
Nitrate | 30 mg N-NO3−/L | Laboratory | Continuous | – | 85 | – | [73] |
Nitrate | 20 mg N-NO2−/L | Laboratory | Continuous | 78 | – | [77] | |
FNA | 0.045 mg FNA/L | Laboratory | Shock for 12 h | 50 | – | – | [80] |
FNA | 0.26 mg FNA/L | Laboratory | Shock for 12 h | 99 | – | 20% in 14 days | [78] |
FNA + H2O2 | 0.1 mg FNA/L + 30 mg H2O2/L | Laboratory | Continuous | 97.4 ± 0.3 | – | – | [75] |
NaOH + Oxygen | pH = 12 6.5 mg O2/L | Laboratory | Continuous | 92 | – | – | [82] |
Nitrate + CaO2 | 30 mg N-NO3−/L + 50 mg CaO2/L | Laboratory | Continuous | – | 87.5 | – | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, F.; Liu, S.; Yin, W.-X.; Gan, L.-L.; Pang, H.-T.; Lv, J.-Q.; Liu, Y.; Wang, A.-J.; Wang, H.-C. Methane Production Mechanism and Control Strategies for Sewers: A Critical Review. Water 2024, 16, 3618. https://doi.org/10.3390/w16243618
Hou F, Liu S, Yin W-X, Gan L-L, Pang H-T, Lv J-Q, Liu Y, Wang A-J, Wang H-C. Methane Production Mechanism and Control Strategies for Sewers: A Critical Review. Water. 2024; 16(24):3618. https://doi.org/10.3390/w16243618
Chicago/Turabian StyleHou, Feng, Shuai Liu, Wan-Xin Yin, Li-Li Gan, Hong-Tao Pang, Jia-Qiang Lv, Ying Liu, Ai-Jie Wang, and Hong-Cheng Wang. 2024. "Methane Production Mechanism and Control Strategies for Sewers: A Critical Review" Water 16, no. 24: 3618. https://doi.org/10.3390/w16243618
APA StyleHou, F., Liu, S., Yin, W.-X., Gan, L.-L., Pang, H.-T., Lv, J.-Q., Liu, Y., Wang, A.-J., & Wang, H.-C. (2024). Methane Production Mechanism and Control Strategies for Sewers: A Critical Review. Water, 16(24), 3618. https://doi.org/10.3390/w16243618