Real-Time Control of A2O Process in Wastewater Treatment Through Fast Deep Reinforcement Learning Based on Data-Driven Simulation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Dynamic Model Based on Deep Learning Method
2.3. DRL Based on LSTM-ATT
2.4. Performance Index
3. Results and Discussion
3.1. Performance of LSTM-ATT
3.2. Training Curve and Time of the LSTM-ATT-Based DQN
3.3. Control Effect of DRLs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, W.; Xu, X.; Liu, B.; Yang, F. Toward energy-neutral wastewater treatment: A membrane combined process of anaerobic digestion and nitritation—Anammox for biogas recovery and nitrogen removal. Chem. Eng. J. 2015, 279, 725–734. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, W.; Xie, J.; Huang, W.; Xin, K. LSTM-Based Model-Predictive Control with Rationality Verification for Bioreactors in Wastewater Treatment. Water 2023, 15, 1779. [Google Scholar] [CrossRef]
- Zanetti, L.; Frison, N.; Nota, E.; Tomizioli, M.; Bolzonella, D.; Fatone, F. Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review. Desalination 2012, 286, 1–7. [Google Scholar] [CrossRef]
- Sheik, A.G.; Tejaswini, E.S.S.; Seepana, M.M.; Ambati, S.R. Control of anaerobic-anoxic-aerobic (A2/O) processes in wastewater treatment: A detailed review. Environ. Technol. Rev. 2023, 12, 420–440. [Google Scholar] [CrossRef]
- Yan, P.; Qin, R.C.; Guo, J.S.; Yu, Q.; Li, Z.; Chen, Y.-P.; Shen, Y.; Fang, F. Net-zero-energy model for sustainable wastewater treatment. Environ. Sci. Technol. 2017, 51, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, L.; Qiu, G. Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China. J. Clean. Prod. 2017, 163, S374–S378. [Google Scholar] [CrossRef]
- Bernardelli, A.; Marsili-Libelli, S.; Manzini, A.; Stancari, S.; Tardini, G.; Montanari, D.; Anceschi, G.; Gelli, P.; Venier, S. Real-time model predictive control of a wastewater treatment plant based on machine learning. Water Sci. Technol. 2020, 81, 2391–2400. [Google Scholar] [CrossRef]
- Gurung, K.; Tang, W.; Sillanpää, M. Unit energy consumption as benchmark to select energy positive retrofitting strategies for Finnish Wastewater Treatment Plants (WWTPs): A Case Study of Mikkeli WWTP. Environ. Process. 2018, 5, 667–681. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Q.; Cao, B.; Qiao, J. A Review of Model Predictive Control for Urban Wastewater Treatment Process. Inf. Control 2022, 51, 41–53. [Google Scholar]
- Pisa, I.; Santin, I.; Morell, A.; Vicario, J.L.; Vilanova, R. LSTM-Based Wastewater Treatment Plants Operation Strategies for Effluent Quality Improvement. IEEE Access 2019, 7, 159773–159786. [Google Scholar] [CrossRef]
- Nasr, M.; Moustafa, M.; Seif, H.; Kobrosy, G. Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex. Eng. J. 2012, 51, 37–43. [Google Scholar] [CrossRef]
- Fiter, M.; Güell, D.; Comas, J.; Colprim, J.; Poch, M.; Rodríguez-Roda, I. Energy Saving in a Wastewater Treatment Process: An Application of Fuzzy Logic Control. Environ. Technol. 2005, 26, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ratnaweera, H.; Holm, J.; Olsbu, V. Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control. J. Environ. Manag. 2017, 193, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Wan, J.; Deng, Z.; Wang, Y.; Zhu, B.; Yan, Z.; Ji, S. Machine learning-based prediction of biological oxygen demand and unit electricity consumption in different-scale wastewater treatment plants. J. Environ. Chem. Eng. 2024, 12, 111849. [Google Scholar] [CrossRef]
- Cheng, Q.; Kim, J.-Y.; Wang, Y.; Ren, X.; Guo, Y.; Park, J.-H.; Park, S.-G.; Lee, S.-Y.; Zheng, G.; Wang, Y.; et al. Novel Ensemble Learning Approach for Predicting COD and TN: Model Development and Implementation. Water 2024, 16, 1561. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Wei, Q.; Yin, H. A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant. Water Res. 2024, 250, 121092. [Google Scholar] [CrossRef]
- Hernandez-del Olmo, F.; Llanes, F.H.; Gaudioso, E. An emergent approach for the control of wastewater treatment plants by means of reinforcement learning techniques. Expert Syst. Appl. 2012, 39, 2355–2360. [Google Scholar] [CrossRef]
- Pang, J.; Yang, S.; He, L.; Chen, Y.; Ren, N. Intelligent control/operational strategies in wwtps through an integrated q-learning algorithm with asm2d-guided reward. Water 2019, 11, 927. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. Optimal Control towards Sustainable Wastewater Treatment Plants Based on Multi-Agent Reinforcement Learning. Chemosphere 2021, 279, 130498. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, W.; Meng, W.; Si, J. Reinforcement-Learning-Based Tracking Control of Waste Water Treatment Process Under Realistic System Conditions and Control Performance Requirements. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 52, 5284–5294. [Google Scholar] [CrossRef]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.A.; Yogamani, S.; Pérez, P. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4909–4926. [Google Scholar] [CrossRef]
- Sangiovanni, B.; Rendiniello, A.; Incremona, G.P.; Ferrara, A.; Piastra, M. Deep Reinforcement Learning for Collision Avoidance of Robotic Manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 2063–2068. [Google Scholar]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Castelletti, A.; Pianosi, F.; Restelli, M. A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resour. Res. 2013, 49, 3476–3486. [Google Scholar] [CrossRef]
- Tian, W.; Xin, K.; Zhang, Z.; Liao, Z.; Li, F. State Selection and Cost Estimation for Deep Reinforcement Learning-Based Real-Time Control of Urban Drainage System. Water 2023, 15, 1528. [Google Scholar] [CrossRef]
- Tian, W.; Fu, G.; Xin, K.; Zhang, Z.; Liao, Z. Improving the interpretability of deep reinforcement learning in urban drainage system operation. Water Res. 2024, 249, 120912. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to Fine-Tune Bert for Text Classification? In Proceedings of the Chinese Com-putational Linguistics: 18th China National Conference, CCL 2019, Kunming, China, 18–20 October 2019; pp. 194–206. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551. [Google Scholar]
- Tian, W.; Liao, Z.; Wang, X. Transfer learning for neural network model in chlorophyll-a dynamics prediction. Environ. Sci. Pollut. Res. 2019, 26, 29857–29871. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Feng, K.; An, T.; Cheng, P.; Wei, L.; Zhao, Z.; Xu, X.; Zhu, L. Enhanced Insights into Effluent Prediction in Wastewater Treatment Plants: Comprehensive Deep Learning Model Explanation Based on SHAP. ACS ES&T Water 2024, 4, 1904–1915. [Google Scholar]
- Yin, W.-X.; Wang, Y.-Q.; Lv, J.-Q.; Chen, J.-J.; Liu, S.; Pang, Z.; Yuan, Y.; Bao, H.-X.; Wang, H.-C.; Wang, A.-J. A Machine Learning Framework for Enhanced Assessment of Sewer System Operation under Data Constraints and Skewed Distributions. ACS&EST Eng. 2024, acsestengg.4c00477. [Google Scholar] [CrossRef]
- Duarte, M.S.; Martins, G.; Oliveira, P.; Fernandes, B.; Ferreira, E.C.; Alves, M.M.; Lopes, F.; Pereira, M.A.; Novais, P. A Review of Computational Modeling in Wastewater Treatment Processes. ACS ES&T Water 2024, 4, 784–804. [Google Scholar]
Time Span | Type | Data and Unit | Maximum | Minimum | Average | Median |
---|---|---|---|---|---|---|
7 days | State | Aerobic MLSS (g/L) | 8700.00 | 7644.00 | 8206.02 | 8261.06 |
Anaerobic MLSS (g/L) | 8696.00 | 7071.00 | 7823.57 | 7836.50 | ||
Anoxic MLSS (g/L) | 7348.00 | 6003.00 | 6525.47 | 6444.41 | ||
Qr (103 m3/s) | 424.67 | 380.75 | 395.34 | 393.41 | ||
Qsr (103 m3/s) | 157.29 | 141.02 | 146.42 | 145.71 | ||
Control | Setting value of DO1 (mg/L) | 4.13 | 3.03 | 3.73 | 3.79 | |
Setting value of DO2 (mg/L) | 4.33 | 3.70 | 3.99 | 3.97 | ||
Setting value of DO3 (mg/L) | 4.13 | 3.77 | 3.95 | 3.95 | ||
Influent/ inflow | Flow (103 m3/s) | 449.39 | 402.91 | 418.35 | 416.31 | |
COD (mg/L) | 933.00 | 381.00 | 590.25 | 566.00 | ||
SS (mg/L) | 800.00 | 183.00 | 414.91 | 373.00 | ||
TP (mg/L) | 13.91 | 4.97 | 8.61 | 8.19 | ||
TN (mg/L) | 68.70 | 33.20 | 54.05 | 55.10 | ||
NH4+ (mg/L) | 40.80 | 21.20 | 29.76 | 29.40 | ||
T (°C) | 21.00 | 18.00 | 19.31 | 19.00 | ||
Effluent/ outflow | Flow (103 m3/s) | 445.12 | 398.50 | 413.71 | 411.52 | |
COD (mg/L) | 33.00 | 13.00 | 21.19 | 21.00 | ||
TP (mg/L) | 0.06 | 0.04 | 0.05 | 0.05 | ||
TN (mg/L) | 8.56 | 5.57 | 6.88 | 6.86 | ||
NH4+ (mg/L) | 0.14 | 0.07 | 0.11 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Zhang, X.; Lu, B.; Lin, Y. Real-Time Control of A2O Process in Wastewater Treatment Through Fast Deep Reinforcement Learning Based on Data-Driven Simulation Model. Water 2024, 16, 3710. https://doi.org/10.3390/w16243710
Hu F, Zhang X, Lu B, Lin Y. Real-Time Control of A2O Process in Wastewater Treatment Through Fast Deep Reinforcement Learning Based on Data-Driven Simulation Model. Water. 2024; 16(24):3710. https://doi.org/10.3390/w16243710
Chicago/Turabian StyleHu, Fukang, Xiaodong Zhang, Baohong Lu, and Yue Lin. 2024. "Real-Time Control of A2O Process in Wastewater Treatment Through Fast Deep Reinforcement Learning Based on Data-Driven Simulation Model" Water 16, no. 24: 3710. https://doi.org/10.3390/w16243710
APA StyleHu, F., Zhang, X., Lu, B., & Lin, Y. (2024). Real-Time Control of A2O Process in Wastewater Treatment Through Fast Deep Reinforcement Learning Based on Data-Driven Simulation Model. Water, 16(24), 3710. https://doi.org/10.3390/w16243710