Reprocessing and Resource Utilization of Landfill Sludge—A Case Study in a Chinese Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Sludge Landfill Site and Sludge Extraction Equipment
2.2. Materials
2.3. Treatment and Disposal Methods for Landfill Sludge
2.3.1. Chemical Conditioning and Dewatering
2.3.2. Sludge Modification
2.3.3. Sludge Leachate Treatment
2.4. Analytical Method
2.4.1. pH, Organic Matter, Potassium (K), and Hygienic Indicators for Sludge
2.4.2. pH and COD (Chemical Oxygen Demand) for Leachate
2.4.3. Heavy Metals and Heat Value of Sludge
3. Results and Discussion
3.1. Sludge Conditioning and Dewatering
3.2. Power Plant Co-Incineration
3.3. Sludge Modification
3.3.1. Heavy Metal
3.3.2. Soluble Salt
3.3.3. Organic Matter, Bearing Ratio, Compressive Strength
3.3.4. Apparent Compaction Effect of Sludge
3.3.5. Compaction Test Results
3.4. Leachate Treatment
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lee, L.H.; Wu, T.Y.; Shak, K.P.Y.; Lim, S.L.; Ng, K.Y.; Nguyen, M.N.; Teoh, W.H. Sustainable approach to biotransform industrial sludge into organic fertilizer via vermicomposting: A mini-review. J. Chem. Technol. Biotechnol. 2018, 93, 925–935. [Google Scholar] [CrossRef]
- Xian, C.; Gong, C.; Lu, F.; Wu, H.; Ouyang, Z. The evaluation of greenhouse gas emissions from sewage treatment with urbanization: Understanding the opportunities and challenges for climate change mitigation in China’s low-carbon pilot city, Shenzhen. Sci. Total Environ. 2023, 855, 158629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Gu, Y.; Yuan, H.; Gong, Y.; Wu, Y. Selecting sustainable technologies for disposal of municipal sewage sludge using a multi-criterion decision-making method: A case study from China. Resour. Conserv. Recycl. 2020, 161, 104881. [Google Scholar] [CrossRef]
- An, K.; Zhuang, D.; Lin, W.; Argilaga, A.; Chen, Y.; Zhan, L. Field Treatment of Storage Sludge and Stability Analysis of Overlying Municipal Waste Landfilling. Appl. Sci. 2021, 11, 12102. [Google Scholar] [CrossRef]
- Ololade, O.O.; Mavimbela, S.; Oke, S.A.; Makhadi, R. Impact of Leachate from Northern Landfill Site in Bloemfontein on Water and Soil Quality: Implications for Water and Food Security. Sustainability 2019, 11, 4238. [Google Scholar] [CrossRef]
- Ogawa, A.; Ono, S.; Onoda, H. Environmental and economic evaluation of mechanical biological treatment system for municipal waste considering the political framework in ichihara city. Appl. Sci. 2021, 11, 10296. [Google Scholar] [CrossRef]
- Xiao, H.; Li, K.; Zhang, D.; Tang, Z.; Niu, X.; Yi, L.; Lin, Z.; Fu, M. Environmental, energy, and economic impact assessment of sludge management alternatives based on incineration. J. Environ. Manag. 2022, 321, 115848. [Google Scholar] [CrossRef]
- Liu, H.; Qiao, H.; Liu, S.; Wei, G.; Zhao, H.; Li, K.; Weng, F. Energy, environment and economy assessment of sewage sludge incineration technologies in China. Energy 2023, 264, 126294. [Google Scholar] [CrossRef]
- Gao, P.; Xu, W.; Sontag, P.; Li, X.; Xue, G.; Liu, T.; Sun, W. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Appl. Microbiol. Biotechnol. 2016, 100, 4663–4673. [Google Scholar] [CrossRef]
- Zhao, G.; Tang, J.; Zhou, C.; Wang, C.; Mei, X.; Wei, Y.; Xu, J. A Megacity-Scale Analysis of Sludge Management and Carbon Footprint in China. Pol. J. Environ. Stud. 2022, 31, 2451–2460. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, C.; Pan, J.; Yang, G.; Sun, C.; Liu, Y.; Chen, X.; Zhao, Z. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. J. Clean. Prod. 2022, 333, 130234. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, Y.; Wang, Z.; Jiang, H. High-efficient nitrogen removal from mature landfill leachate and waste activated sludge (WAS) reduction via partial nitrification and integrated fermentation-denitritation process (PNIFD). Water Res. 2019, 160, 394–404. [Google Scholar] [CrossRef] [PubMed]
- De Carluccio, M.; Fiorentino, A.; Rizzo, L. Multi-barrier treatment of mature landfill leachate: Effect of Fenton oxidation and air stripping on activated sludge process and cost analysis. J. Environ. Chem. Eng. 2020, 8, 104444. [Google Scholar] [CrossRef]
- Dos Santos, H.A.P.; de Castilhos Júnior, A.B.; Nadaleti, W.C.; Lourenço, V.A. Ammonia recovery from air stripping process applied to landfill leachate treatment. Environ. Sci. Pollut. Res. 2020, 27, 45108–45120. [Google Scholar] [CrossRef] [PubMed]
- Bueno, R.d.F.; Faria, J.K.; Uliana, D.P.; Liduino, V.S. Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge. Environ. Technol. 2021, 42, 3756–3770. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, J.; Gao, B.; Sillanpää, M.; Al-Farraj, S. The effect of activated sludge treatment and catalytic ozonation on high concentration of ammonia nitrogen removal from landfill leachate. Bioresour. Technol. 2022, 361, 127668. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Yang, G.; Tao, T.; Peng, Y. Recent advances in nitrogen removal from landfill leachate using biological treatments—A review. J. Environ. Manag. 2019, 235, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Li, S.; Zou, H.; Wen, F.; Cai, A.; Zhu, R.; Tian, W.; Shi, D.; Chai, H.; Gu, L. Aged landfill leachate enhances anaerobic digestion of waste activated sludge. J. Environ. Manag. 2021, 293, 112853. [Google Scholar] [CrossRef]
- Yoo, M.J.; Kim, H.W.; Yoo, B.M.; Park, H.B. Highly soluble polyetheramine-functionalized graphene oxide and reduced graphene oxide both in aqueous and non-aqueous solvents. Carbon 2014, 75, 149–160. [Google Scholar] [CrossRef]
- Feng, Q.; Guo, K.; Gao, Y.; Liu, B.; Yue, Q.; Shi, W.; Feng, C.; Zhou, J.; Wang, G.; Gao, B. Effect of coagulation treatment on sludge dewatering performance: Application of polysilicate and their mechanism. Sep. Purif. Technol. 2022, 301, 121954. [Google Scholar] [CrossRef]
- DB31/T 445-2009; Discharge Standard for Municipal Sewerage System. Shanghai Municipal Bureau of Quality Supervision: Shanghai, China, 2009.
- CJ/T 221-2005; Determination Method for Municipal Sludge in Wastewater Treatment Plant. Ministry of Construction of the People’s Republic of China: Beijing, China, 2005.
- GB 6920-1986; Water Quality; Determination of pH Value; Glass Electrode Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1986.
- GB 11914-1989; Water Quality-Determination of the Chemical Oxygen Demand-Dichromate Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1989.
- GB/T 213-2008; Determination of Calorific Value of Coal. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008.
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, H.; Yang, P.; Li, D.; Wang, Z.; Qi, Y.; Zhang, J. Aluminum Speciation in Polymerized Aluminum Chloride: Roles and Chloride Ion Migration in Sludge Dewatering. J. Environ. Chem. Eng. 2023, 12, 111749. [Google Scholar] [CrossRef]
- GB 50021-2001; Code for Investigation of Geotechnical Engineering. Ministry of Construction of the People’s Republic of China: Beijing, China, 2002.
- Ma, Y.; Peng, Y.; Wang, X. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal. Desalination 2009, 246, 534–544. [Google Scholar] [CrossRef]
- DB31/1291-2021; Emission Standard of Air Pollutants for Coal and Sludge Co-Fired Power Plant. Shanghai Municipal Bureau of Quality Supervision: Shanghai, China, 2021.
- Liang, Y.; Xu, D.; Feng, P.; Hao, B.; Guo, Y.; Wang, S. Municipal sewage sludge incineration and its air pollution control. J. Clean. Prod. 2021, 295, 126456. [Google Scholar] [CrossRef]
- Wang, T.; Ma, H.; Ren, L.; Chen, Z.; Chen, S.; Liu, J.; Mei, M.; Li, J.; Xue, Y. Insights into in-situ sulfur retention by co-combustion of dyeing sludge and wood sawdust. J. Clean. Prod. 2021, 323, 129114. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ. Pollut. 2020, 266, 115375. [Google Scholar] [CrossRef] [PubMed]
- Naz, A.; Chowdhury, A.; Chandra, R.; Mishra, B.K. Potential human health hazard due to bioavailable heavy metal exposure via consumption of plants with ethnobotanical usage at the largest chromite mine of India. Environ. Geochem. Health 2020, 42, 4213–4231. [Google Scholar] [CrossRef]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- CJJ 194-2013; Specification for Design of Urban Road Subgrades. People’s Republic of China Ministry of Housing and Urban-Rural Development: Beijing, China, 2013.
- GB 50201-2012; Code for Construction and Acceptance of Earthwork and Blasting Engineering. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2012.
- Ahmad, M.; Al-Zubi, M.A.; Kubińska-Jabcoń, E.; Majdi, A.; Al-Mansob, R.A.; Sabri, M.M.S.; Ali, E.; Naji, J.A.; Elnaggar, A.Y.; Zamin, B. Predicting California bearing ratio of HARHA-treated expansive soils using Gaussian process regression. Sci. Rep. 2023, 13, 13593. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Mahmood, Z.; Nisar, A.; Aamir, M.; Farid, A.; Waseem, M. Compaction performance analysis of alum sludge waste modified soil. Constr. Build. Mater. 2020, 230, 116953. [Google Scholar] [CrossRef]
- GB 50268-2008; Code for Construction and Acceptance of Water and Sewerage Pipeline Works. People’s Republic of China Ministry of Housing and Urban-Rural Development: Beijing, China, 2008.
Depth | 1 m | 4 m |
---|---|---|
pH | 7.58 | 7.84 |
Moisture content | 85.14% | 72.09% |
Organic matter | 37.70% | 39.62% |
Low heating value (kJ/kg) | 6954 | 6343 |
C (%) | 15.6 | 14.2 |
S (%) | 1.47 | 1.62 |
Ca (mg/kg) | 3.429 × 104 | 3.203 × 104 |
Al (mg/kg) | 5.392 × 104 | 7.909 × 104 |
Fe (mg/kg) | 2.771 × 104 | 2.717 × 104 |
Cl (mg/L) | 1036 | 1478 |
Item | Treatment Standard | Influent | Effluent |
---|---|---|---|
pH | 6–9 | 5.53 | 6.67 |
SS (mg/L) | 400 | 595 | 98 |
CODcr (mg/L) | n.a. | 479 | 392 |
NH3-N (mg/L) | 40 | 1.26 × 103 | 15.6 |
TP (mg/L) | 8 | 7.00 | 1.98 |
TN (mg/L) | n.a. | 2.12 × 103 | 161 |
Item | Mean Value | Max. Value | Min. Value |
---|---|---|---|
Moisture content (%) | 58.3 | 63.6 | 52.9 |
Organic matter (%) | 32.2 | 35.7 | 28.9 |
Cl (mg/L) | 240 | 354 | 157 |
Higher heating value (kcal/kg) | 2005 | 2080 | 1950 |
Lower heating value (kcal/kg) | 1800 | 1880 | 1740 |
Ni (mg/kg) | 52.1 | 61.7 | 45.5 |
Cu (mg/kg) | 483 | 521 | 414 |
Zn (mg/kg) | 1074 | 1250 | 944 |
Cr (mg/kg) | 191 | 200 | 176 |
Cd (mg/kg) | 2.38 | 2.51 | 2.29 |
Pb (mg/kg) | 59.6 | 64.8 | 53.7 |
Hg (mg/kg) | 3.45 | 3.82 | 3.14 |
As (mg/kg) | 20.0 | 21.8 | 18.6 |
Reagent | Main Component | Dosage (kg/t DS) | Dry Weight Gain Ratio (%) | Moisture Content (%) | Chlorine as Received Basis (%) | Sulfur as Received Basis (%) |
---|---|---|---|---|---|---|
Original reagent | PFSS | 550 | 5.20 | 59.6 | 0.24 | 1.59 |
PEA | 9 | |||||
Modified reagent | PAS | 100–600 | 2.7–20 | 58.7 | 0.12 | 0.79 |
PEA | 10–30 |
Power Plant | Reagent | Moisture Content (%) | Co-Incineration Amount (t) |
---|---|---|---|
A | PFSS + PEA | 58.9 | 13.6 |
PAS + PEA | 57.2 | 48.6 | |
B | PFSS + PEA | 58.6 | 15.4 |
PAS + PEA | 58.2 | 45.1 | |
C | PFSS + PEA | 63.3 | 12.1 |
PAS + PEA | 62.1 | 15.4 |
Item | Dosage of Solidifying Agent | ||
---|---|---|---|
0 | 5% | 7.5% | |
Ni (mg/kg) | 55 | 63 | 33 |
Cu (mg/kg) | 417 | 370 | 365 |
Zn (mg/kg) | 1192 | 1038 | 1022 |
Cr (mg/kg) | 120 | 104 | 89 |
Cd (mg/kg) | 1.8 | 1.6 | 1.6 |
Pb (mg/kg) | 75 | 67 | 65 |
Hg (mg/kg) | 1.7 | 1.6 | 1.5 |
As (mg/kg) | 5.87 | 5.78 | 5.81 |
Item | Batch 1 | Batch 2 | Corrosion Level | 0% Addition | 5% Addition | 7.5% Addition | Corrosion Level |
---|---|---|---|---|---|---|---|
CO32− (%) | 0 | 0 | n.a. | 0 | 0 | 0 | n.a. |
HCO3− (%) | 0.13 | 0.02 | n.a. | 0.05 | 0.14 | 0.12 | n.a. |
SO42− (%) | 0.24 | 0.51 | weak | 0.21 | 0.19 | 0.18 | weak |
Cl− (%) | 0.03 | 0.05 | very weak | 0.03 | 0.03 | 0.01 | very weak |
Ca2− (%) | 0.13 | 0.36 | n.a. | 0.37 | 0.39 | 0.35 | n.a. |
Mg2− (%) | 0.06 | 0.06 | very weak | 0.14 | 0.21 | 0.18 | very weak |
Na+ (mg/kg) | 359.8 | 327.3 | n.a. | 40.23 | 46.83 | 50.37 | n.a. |
K+ (mg/kg) | 458.1 | 363.7 | n.a. | 42.37 | 53.99 | 57.99 | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Luan, J.; Nie, J.; Zhang, X.; Du, J.; Zhao, G.; Dong, L.; Fan, Y.; Cui, H.; Li, Y. Reprocessing and Resource Utilization of Landfill Sludge—A Case Study in a Chinese Megacity. Water 2024, 16, 468. https://doi.org/10.3390/w16030468
Yang Y, Luan J, Nie J, Zhang X, Du J, Zhao G, Dong L, Fan Y, Cui H, Li Y. Reprocessing and Resource Utilization of Landfill Sludge—A Case Study in a Chinese Megacity. Water. 2024; 16(3):468. https://doi.org/10.3390/w16030468
Chicago/Turabian StyleYang, Yifeng, Jingshuai Luan, Jing Nie, Xin Zhang, Jiong Du, Gang Zhao, Lei Dong, Yong Fan, He Cui, and Yubo Li. 2024. "Reprocessing and Resource Utilization of Landfill Sludge—A Case Study in a Chinese Megacity" Water 16, no. 3: 468. https://doi.org/10.3390/w16030468
APA StyleYang, Y., Luan, J., Nie, J., Zhang, X., Du, J., Zhao, G., Dong, L., Fan, Y., Cui, H., & Li, Y. (2024). Reprocessing and Resource Utilization of Landfill Sludge—A Case Study in a Chinese Megacity. Water, 16(3), 468. https://doi.org/10.3390/w16030468