Response of Land Surface Temperature to Heatwave-Induced Bio-Geophysical Changes in Tropical Forests on Hainan Island from 2010 to 2022
Abstract
:1. Introduction
2. Data and Methods
2.1. Observational Data
2.2. Identification of Heatwave Events
2.3. The Attribution Framework
2.4. Implementing Attribution Method on Observational Data
3. Results
3.1. Response of LST in Tropical Rubber Forest Ecosystem to Heatwaves
3.2. The Impacts of Heatwaves on Radiation and Surface Fluxes
3.3. Attribution of LST Response to Heatwave
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Start Date of HW | End Date of HW | Duration of HW Days | Number of HW Days | Number of Non-HW Days |
---|---|---|---|---|---|
2010 | 03–01 | 03–06 | 6 | 25 | 340 |
04–11 | 04–13 | 3 | |||
07–04 | 07–12 | 9 | |||
07–26 | 08–01 | 7 | |||
2011 | 05–09 | 05–11 | 3 | 3 | 362 |
2012 | - | - | - | - | 365 |
2013 | - | - | - | - | 365 |
2014 | 06–02 | 06–05 | 4 | 10 | 355 |
09–27 | 10–02 | 6 | |||
2015 | 03–15 | 03–19 | 5 | 41 | 324 |
03–31 | 04–04 | 5 | |||
04–18 | 04–20 | 3 | |||
06–30 | 07–04 | 5 | |||
08–15 | 08–19 | 5 | |||
09–04 | 09–08 | 5 | |||
09–22 | 09–26 | 5 | |||
11–11 | 11–13 | 3 | |||
11–15 | 11–19 | 5 | |||
2016 | 05–05 | 05–08 | 4 | 22 | 343 |
06–13 | 06–15 | 3 | |||
07–15 | 07–19 | 5 | |||
08–07 | 08–09 | 3 | |||
10–22 | 10–28 | 7 | |||
2017 | 04–09 | 04–11 | 3 | 9 | 356 |
08–08 | 08–10 | 3 | |||
08–12 | 08–14 | 3 | |||
2018 | 03–03 | 03–05 | 3 | 3 | 362 |
2019 | 03–20 | 03–22 | 3 | 16 | 349 |
04–09 | 04–11 | 3 | |||
04–19 | 04–25 | 7 | |||
05–18 | 05–20 | 3 | |||
2020 | 05–05 | 05–09 | 5 | 13 | 352 |
06–06 | 06–09 | 4 | |||
06–21 | 06–24 | 4 | |||
2021 | 08–08 | 08–10 | 3 | 6 | 359 |
08–22 | 08–24 | 3 | |||
2022 | 03–20 | 03–22 | 3 | 9 | 356 |
04–25 | 04–27 | 3 | |||
11–27 | 11–29 | 3 | |||
Total | - | - | - | 157 | 4588 |
References
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The Role of Urban Trees in Reducing Land Surface Temperatures in European Cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, G.; Gao, H.; Li, Y.; Hou, M.; Li, J.; Miao, C. Spatial Characterization of Global Heat Waves Using Satellite-Based Land Surface Temperature. Int. J. Appl. Earth Obs. Geoinform. 2023, 125, 103604. [Google Scholar] [CrossRef]
- Digavinti, J.; Manikiam, B. Satellite Monitoring of Forest Fire Impact and Regeneration Using NDVI and LST. J. Appl. Remote Sens. 2021, 15, 042412-1. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Chen, Y.; Wang, M. The Correlation Analysis of Land Surface Temperature and Fractional Vegetation Coverage in Fujian Province. J. Geo-Inf. Sci. 2019, 21, 03000445. [Google Scholar] [CrossRef]
- Liu, W.; Jia, B.; Li, T.; Zhang, Q.; Ma, J. Correlation Analysis between Urban Green Space and Land Surface Temperature from the Perspective of Spatial Heterogeneity: A Case Study within the Sixth Ring Road of Beijing. Sustainability 2022, 14, 13492. [Google Scholar] [CrossRef]
- Khan, M.; Qasim, M.; Tahir, A.A.; Farooqi, A. Machine Learning-Based Assessment and Simulation of Land Use Modification Effects on Seasonal and Annual Land Surface Temperature Variations. Heliyon 2023, 9, e23043. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Hao, T.; Lin, L.; Zhengyong, Z.; Hongjin, C.; Xueying, Z.; Tongxia, W.; Ziwei, K. Spatiotemporal diversity and attribution analysis of land surface temperature in China from 2001 to 2020. Acta Geogr. Sin. 2022, 77, 1713–1729. [Google Scholar] [CrossRef]
- Khorchani, M.; Vicente-Serrano, S.; Azorin-Molina, C.; Garcia, M.; Martín-Hernández, N.; Peña-Gallardo, M.; Kenawy, A.; Domínguez-Castro, F. Trends in LST over the Peninsular Spain as Derived from the AVHRR Imagery Data. Glob. Planet. Change 2018, 166, 75–93. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, L.; Oleson, K.W. Large Model Structural Uncertainty in Global Projections of Urban Heat Waves. Nat. Commun. 2021, 12, 3736. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Sun, P.; Zhang, Q.; Luo, M.; Liu, R. Amplification of Non-Stationary Drought to Heatwave Duration and Intensity in Eastern China: Spatiotemporal Pattern and Causes. J. Hydrol. 2022, 612, 128154. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Meehl, G.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Shao, J.; Wu, B.; Lin, H. The Spatiotemporal Variation Characteristics and Impacts of Summer Heatwaves, Droughts, and Compound Drought and Heatwave Events in Jiangsu Province, China. Water 2024, 16, 89. [Google Scholar] [CrossRef]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Marchese, A.; Carmona-Moreno, C. Heat Waves in Africa 1981–2015, Observations and Reanalysis. Nat. Hazards Earth Syst. Sci. 2017, 17, 115–125. [Google Scholar] [CrossRef]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Hernandez, C.; Carmona-Moreno, C. Magnitude and Frequency of Heat and Cold Waves in Recent Decades: The Case of South America. Nat. Hazards Earth Syst. Sci. 2016, 3, 821–831. [Google Scholar] [CrossRef]
- Ratnam, J.V.; Behera, S.K.; Ratna, S.B.; Rajeevan, M.; Yamagata, T. Anatomy of Indian Heatwaves. Sci. Rep. 2016, 6, 24395. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Lau, N.-C. Heat Waves in Southern China: Synoptic Behavior, Long-Term Change, and Urbanization Effects. J. Clim. 2017, 30, 703–720. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, A.; Kumar Goyal, M. Univariate and Bivariate Spatiotemporal Characteristics of Heat Waves and Relative Influence of Large-Scale Climate Oscillations over India. J. Hydrol. 2024, 628, 130596. [Google Scholar] [CrossRef]
- Keellings, D.; Moradkhani, H. Spatiotemporal Evolution of Heat Wave Severity and Coverage Across the United States. Geophys. Res. Lett. 2020, 47, e2020GL087097. [Google Scholar] [CrossRef]
- Brown, S. Future Changes in Heatwave Severity, Duration and Frequency Due to Climate Change for the Most Populous Cities. Weather Clim. Extrem. 2020, 30, 100278. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Liu, H.; Ulpiani, G. Localized Synergies between Heat Waves and Urban Heat Islands: Implications on Human Thermal Comfort and Urban Heat Management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Ting, M.; Lin, A.; Wang, Z. An Intensified Mode of Variability Modulating the Summer Heat Waves in Eastern Europe and Northern China. Geophys. Res. Lett. 2018, 45, 11361–11369. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, L.; Sun, Y.; Hu, T.; Limsakul, A.; Singhruck, P.; Pimonsree, S. Heatwaves in Southeast Asia and Their Changes in a Warmer World. Earths Future 2021, 9, e2021EF001992. [Google Scholar] [CrossRef]
- Anderson, G.B.; Oleson, K.W.; Jones, B.; Peng, R.D. Classifying Heatwaves: Developing Health-Based Models to Predict High-Mortality versus Moderate United States Heatwaves. Clim. Change 2018, 146, 439–453. [Google Scholar] [CrossRef]
- Brás, T.A.; Seixas, J.; Carvalhais, N.; Jägermeyr, J. Severity of Drought and Heatwave Crop Losses Tripled over the Last Five Decades in Europe. Environ. Res. Lett. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Vautard, R.; Aalst, M.; Boucher, O.; Drouin, A.; Haustein, K.; Kreienkamp, F.; Van Oldenborgh, G.J.; Otto, F.; Ribes, A.; Robin, Y.; et al. Human Contribution to the Record-Breaking June and July 2019 Heat Waves in Western Europe. Environ. Res. Lett. 2020, 15, 094077. [Google Scholar] [CrossRef]
- Chiarelli, D.; Passera, C.; Rulli, M.C.; Rosa, L.; Ciraolo, G.; D’Odorico, P. Hydrological Consequences of Natural Rubber Plantations in Southeast Asia. Land Degrad. Dev. 2020, 31, 2060–2073. [Google Scholar] [CrossRef]
- Cao, X.; Xu, X.; Che, H.; West, J.S.; Luo, D. Effects of Temperature and Leaf Age on Conidial Germination and Disease Development of Powdery Mildew on Rubber Tree. Plant Pathol. 2021, 70, 484–491. [Google Scholar] [CrossRef]
- Qi, D.; Yang, C.; Yun, T.; Wu, Z. The Main Service Functions and Driving Forces of Rubber (Hevea brasiliensis) Plantation Ecosystem in China. J. Rubber Res. 2023, 26, 155–164. [Google Scholar] [CrossRef]
- Lai, H.; Chen, B.; Yin, X.; Wang, G.; Wang, X.; Yun, T.; Lan, G.; Wu, Z.; Yang, C.; Kou, W. Dry Season Temperature and Rainy Season Precipitation Significantly Affect the Spatio-Temporal Pattern of Rubber Plantation Phenology in Yunnan Province. Front. Plant Sci. 2023, 14, 1283315. [Google Scholar] [CrossRef]
- Qian, S.; Chen, X.; Lang, W.; Schwartz, M. Examining Spring Phenological Responses to Temperature Variations during Different Periods in Subtropical and Tropical China. Int. J. Climatol. 2020, 41, E3208–E3218. [Google Scholar] [CrossRef]
- Ling, Z.; Shi, Z.; Gu, S.; Wang, T.; Zhu, W.; Feng, G. Impact of Climate Change and Rubber (Hevea brasiliensis) Plantation Expansion on Reference Evapotranspiration in Xishuangbanna, Southwest China. Front. Plant Sci. 2023, 13, 830519. [Google Scholar] [CrossRef]
- Hazir, M.; Kadir, R.; Karim, Y. Projections on Future Impact and Vulnerability of Climate Change towards Rubber Areas in Peninsular Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012053. [Google Scholar] [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A. Substantial Increase in Concurrent Droughts and Heatwaves in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 11484–11489. [Google Scholar] [CrossRef] [PubMed]
- Mazdiyasni, O.; Sadegh, M.; Chiang, F.; AghaKouchak, A. Heat Wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis. Sci. Rep. 2019, 9, 14117. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Y.; Fu, X.; Singh, V.P.; Qiu, J. Detection and Attribution of Urbanization Impact on Summer Extreme Heat Based on Nonstationary Models in the Yangtze River Delta, China. Urban Clim. 2023, 47, 101376. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and Mortality in 31 Major Chinese Cities: Definition, Vulnerability and Implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top Ten European Heatwaves since 1950 and Their Occurrence in the Coming Decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Wang, N.; Chen, J.; He, T.; Xu, X.; Liu, L.; Sun, Z.; Qiao, Z.; Han, D. Understanding the Differences in the Effect of Urbanization on Land Surface Temperature and Air Temperature in China: Insights from Heatwave and Non-Heatwave Conditions. Environ. Res. Lett. 2023, 18, 104038. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, B.; You, Q.; Zhang, Y.; Ullah, S. Observed Changes in Heat Waves with Different Severities in China during 1961-2015. Theor. Appl. Climatol. 2020, 141, 1529–1540. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of Extreme Heat Waves in Present Climate and Their Projection in a Warming World. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Liao, W.; Rigden, A.J.; Li, D. Attribution of Local Temperature Response to Deforestation. J. Geophys. Res. Biogeosci. 2018, 123, 1572–1587. [Google Scholar] [CrossRef]
- Alexander, L.; Allen, S.; Bindoff, N.; Breon, F.-M.; Church, J.; Cubasch, U.; Emori, S.; Forster, P.; Friedlingstein, P.; Gillett, N.; et al. (Eds.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Hartmann, D.; Ockert-Bell, M.; Michelsen, M. The Effect of Cloud Type on Earth’s Energy Balance: Global Analysis. J. Clim. 1992, 5, 1281–1304. [Google Scholar] [CrossRef]
- Chen, T.; Rossow, W.; Zhang, Y. Radiative Effects of Cloud-Type Variations. J. Clim. 2000, 13, 264–286. [Google Scholar] [CrossRef]
- Bourgeois, Q.; Ekman, A.; Igel, M.; Krejci, R. Ubiquity and Impact of Thin Mid-Level Clouds in the Tropics. Nat. Commun. 2016, 7, 12432. [Google Scholar] [CrossRef]
- Wu, S.; Luo, M.; Zhao, R.; Li, J.; Sun, P.; Liu, Z.; Wang, X.; Wang, P.; Zhang, H. Local Mechanisms for Global Daytime, Nighttime, and Compound Heatwaves. Npj Clim. Atmos. Sci. 2023, 6, 36. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Xue, D.; Ren, L.; Tang, J.; Leung, L.R.; Liao, H. Aerosols Overtake Greenhouse Gases Causing a Warmer Climate and More Weather Extremes toward Carbon Neutrality. Nat. Commun. 2023, 14, 7257. [Google Scholar] [CrossRef]
- Rigden, A.J.; Li, D. Attribution of Surface Temperature Anomalies Induced by Land Use and Land Cover Changes. Geophys. Res. Lett. 2017, 44, 6814–6822. [Google Scholar] [CrossRef]
- Perkins, S.E. A Review on the Scientific Understanding of Heatwaves—Their Measurement, Driving Mechanisms, and Changes at the Global Scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Freychet, N.; Tett, S.; Wang, J.; Hegerl, G. Summer Heat Waves over Eastern China: Dynamical Processes and Trend Attribution. Environ. Res. Lett. 2017, 12, 024015. [Google Scholar] [CrossRef]
- Deng, K.; Ting, M.; Yang, S.; Tan, Y. Increased Frequency of Summer Extreme Heat Waves over Texas Area Tied to the Amplification of Pacific Zonal SST Gradient. J. Clim. 2018, 31, 5629–5647. [Google Scholar] [CrossRef]
- Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Zhou, X.; Haginoya, S.; Wang, C. Estimation of Surface Long Wave Radiation and Broadband Emissivity Using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature//Emissivity Products. J. Geophys. Res. 2005, 110, D11109. [Google Scholar] [CrossRef]
- Damour, G.; Simonneau, T.; Cochard, H.; Urban, L. An Overview of Models of Stomatal Conductance at the Leaf Level. Plant Cell Environ. 2010, 33, 1419–1438. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2013; p. 407. [Google Scholar]
- Guo, S.; Zhixiang, W.; Liu, W.; Sun, Z.; Wu, L.; Fang, M.; Peng, W. Attribution Analysis of Water Use Efficiency in Tropical Rubber Plantations during Drought-Monsoon Season Transition. Front. For. Glob. Change 2023, 6, 1208595. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Y.; Song, Q.; Liu, W.-J.; Deng, X.-B.; Tang, J.-W.; Deng, Y.; Zhou, W.; Yang, L.-Y.; Yu, G.-R.; et al. Rubber Plantations Act as Water Pumps in Tropical China. Geophys. Res. Lett. 2011, 38, 24406. [Google Scholar] [CrossRef]
- Ghausi, S.A.; Tian, Y.; Zehe, E.; Kleidon, A. Radiative Controls by Clouds and Thermodynamics Shape Surface Temperatures and Turbulent Fluxes over Land. Proc. Natl. Acad. Sci. USA 2023, 120, e2220400120. [Google Scholar] [CrossRef]
- Teuling, A.J.; Seneviratne, S.I.; Stöckli, R.; Reichstein, M.; Moors, E.; Ciais, P.; Luyssaert, S.; van den Hurk, B.; Ammann, C.; Bernhofer, C.; et al. Contrasting Response of European Forest and Grassland Energy Exchange to Heatwaves. Nat. Geosci. 2010, 3, 722–727. [Google Scholar] [CrossRef]
- Giambelluca, T.W.; Mudd, R.G.; Liu, W.; Ziegler, A.D.; Kobayashi, N.; Kumagai, T.; Miyazawa, Y.; Lim, T.K.; Huang, M.; Fox, J.; et al. Evapotranspiration of Rubber (Hevea brasiliensis) Cultivated at Two Plantation Sites in Southeast Asia. Water Resour. Res. 2016, 52, 660–679. [Google Scholar] [CrossRef]
) | ) | /W) | ) | /W) | (m/s) | (m/s) |
---|---|---|---|---|---|---|
−0.7799 | 0.5467 | 0.1703 | 0.2199 | −0.1703 | 0.0811 | −0.1929 |
(K) | (%) | ) | (kPa) | ) | (s/m) | (s/m) |
---|---|---|---|---|---|---|
6.1082 | −10.7186 | 86.3368 | −0.1798 | 5.3319 | 29.8581 | 1.1844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shao, X.; Wu, Z.; Sun, Z.; Li, M.; Jiang, L.; Xian, Y.; Wang, P. Response of Land Surface Temperature to Heatwave-Induced Bio-Geophysical Changes in Tropical Forests on Hainan Island from 2010 to 2022. Water 2024, 16, 752. https://doi.org/10.3390/w16050752
Li Y, Shao X, Wu Z, Sun Z, Li M, Jiang L, Xian Y, Wang P. Response of Land Surface Temperature to Heatwave-Induced Bio-Geophysical Changes in Tropical Forests on Hainan Island from 2010 to 2022. Water. 2024; 16(5):752. https://doi.org/10.3390/w16050752
Chicago/Turabian StyleLi, Yunshuai, Xinyuan Shao, Zhixiang Wu, Zhongyi Sun, Mingzhe Li, Lingxiu Jiang, Yuanhong Xian, and Peng Wang. 2024. "Response of Land Surface Temperature to Heatwave-Induced Bio-Geophysical Changes in Tropical Forests on Hainan Island from 2010 to 2022" Water 16, no. 5: 752. https://doi.org/10.3390/w16050752
APA StyleLi, Y., Shao, X., Wu, Z., Sun, Z., Li, M., Jiang, L., Xian, Y., & Wang, P. (2024). Response of Land Surface Temperature to Heatwave-Induced Bio-Geophysical Changes in Tropical Forests on Hainan Island from 2010 to 2022. Water, 16(5), 752. https://doi.org/10.3390/w16050752