An Alternative Approach Using the Firefly Algorithm and a Hybrid Method Based on the Artificial Bee Colony and Cultural Algorithm for Reservoir Operation
Abstract
:1. Introduction
2. Methodology
2.1. Research Area
2.2. Model for Simulating Operation of Reservoir
2.3. Firefly Algorithm (FA)
2.4. Artificial Bee Colony and Cultural Algorithm (ABC-CA)
2.4.1. Cultural Algorithm (CA)
2.4.2. Artificial Bee Colony (ABC)
2.5. Firefly Algorithm-Incorporating Reservoir Simulation Model (RSM)
2.6. Artificial Bee Colony and Cultural Algorithm Incorporating RSM
2.7. Assessment of Obtained RORCs
2.8. Analysis of Data Using Statistical Methods
3. Results
3.1. Optimal RORCs
3.2. Efficiency of Obtained RORCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaiyason, T.; Yamoat, N.; Sivanpheng, O.; Kangrang, A. Application of Harmony Search Algorithm for Improvement of Reservoir Rule Curves under Dynamic Data of Water Requirements. Int. Rev. Civ. Eng. (IRECE) 2023, 14, 247–258. [Google Scholar] [CrossRef]
- Techarungruengsakul, R.; Kangrang, A. Application of Harris Hawks Optimization with Reservoir Simulation Model Considering Hedging Rule for Network Reservoir System. Sustainability 2022, 14, 4913. [Google Scholar] [CrossRef]
- Phumiphan, A.; Kangrang, A. Development of Decision-Making Support Tools for Future Reservoir Management Under Climate and Land Cover Variability: A Case Study. Int. Rev. Civ. Eng. (IRECE) 2021, 12, 271–283. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Azad, M.; Fallah-Mehdipour, E.; Delpasand, M.; Chu, X. Verification of FPA and PSO algorithms for rule curve extraction and optimization of single- and multi-reservoir systems’ operations considering their specific purposes. Water Supply 2021, 21, 166–188. [Google Scholar] [CrossRef]
- Barati, A.; Zhoolideh, M.; Azadi, H.; Lee, J.; Scheffran, J. Interactions of land-use cover and climate change at global level: How to mitigate the environmental risks and warming effects. Ecol. Indic. 2023, 146, 109829. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S. Incorporating ecological requirement into multipurpose reservoir operating rule curves for adaptation to climate change. J. Hydrol. 2013, 498, 153–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, C.; Ye, A.; Zheng, T.; Nie, X.; Tu, A.; Zhu, H.; Zhang, S. Impacts of Climate and Land-Use Change on Blue and Green Water: A Case Study of the Upper Ganjiang River Basin, China. Water 2020, 12, 2661. [Google Scholar] [CrossRef]
- Duan, W.; Chen, Y.; Zou, S.; Nover, D. Managing the water-climate- food nexus for sustainable development in Turkmenistan. J. Clean. Prod. 2019, 220, 212–224. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Zhang, W.; Peng, H.; Xu, G.; Zhao, Y.; Shen, Z. Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China. Sustainability 2022, 14, 2023. [Google Scholar] [CrossRef]
- Tanachaichoksirikun, P.; Seeboonruang, U. Distributions of Groundwater Age under Climate Change of Thailand’s Lower Chao Phraya Basin. Water 2020, 12, 3474. [Google Scholar] [CrossRef]
- Tanachaichoksirikun, P.; Seeboonruang, U. Effect of Climate Change on Groundwater Age of Thailand’s Lower Chao Phraya Basin. In Proceedings of the 5th International Conference on Engineering, Applied Sciences and Technology, Luang Prabang, Laos, 2–5 July 2019; p. 639. [Google Scholar] [CrossRef]
- Pholkern, K.; Saraphirom, P.; Srisuk, K. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand. Sci. Total Environ. 2018, 633, 1518–1535. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Versión Inglés; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Sieler, K.P.; Gu, W.Z.; Stichler, W. Transient response of groundwater systems to climate changes. Geol. Soc. Spec. Publ. 2008, 288, 111–119. [Google Scholar] [CrossRef]
- Doutani, K.; Tebakari, T.; Kure, S.; Suvanpimol, P. Proposal and verification of a new simple reservoir operation for large scale reservoir in the chao phraya basin, Thailand. J. Jpn. Soc. Civ. Eng. 2015, 71, I_1423–I_1428. [Google Scholar]
- Visweswararao, M.; Viswanadh, G.K. Operation of a Upstream Reservoir Using Rule Curve to Improve the Performance of the Downstream Reservoirs. Int. J. Civ. Eng. Technol. 2019, 10, 14–21. [Google Scholar]
- Lei, X.; Zhang, J.; Wang, H.; Wang, M.; Khu, S.-T.; Li, Z.; Tan, Q. Deriving mixed reservoir operating rules for flood control based on weighted non-dominated sorting genetic algorithm II. J. Hydrol. 2018, 564, 967–983. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, W.; Wang, Y. Optimization of Multi-Reservoir Operating Rules for a Water Supply System. Water Resour. Manag. 2018, 32, 4543–4559. [Google Scholar] [CrossRef]
- Ashrafi, S.M.; Dariane, A.B. Coupled Operating Rules for Optimal Operation of Multi-Reservoir Systems. Water Resour. Manag. 2017, 31, 4505–4520. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, X.; Wang, H.; Wang, C.; Xiong, Y.; Zhang, W. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. J. Hydrol. 2017, 551, 253–264. [Google Scholar] [CrossRef]
- Zhong, X.; Duan, M.; Zhang, X.; Cheng, P. A hybrid differential evolution based on gaining-sharing knowledge algorithm and harris hawks optimization. PLoS ONE 2021, 16, e0250951. [Google Scholar] [CrossRef]
- Donyaii, A.; Sarraf, A.; Ahmadi, H. Water Reservoir Multiobjective Optimal Operation Using Grey Wolf Optimizer. Shock Vib. 2020, 2020, 10. [Google Scholar] [CrossRef]
- Pagano, A.; Giordano, R.; Vurro, M. A Decision Support System Based on AHP for Ranking Strategies to Manage Emergencies on Drinking Water Supply Systems. Water Resour. Manag. 2021, 35, 613–628. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Arunkumar, R. Comparison of Static and Dynamic Resilience for a Multipurpose Reservoir Operation. Water Resour. Res. 2016, 52, 8630–8649. [Google Scholar] [CrossRef]
- Moeini, R.; Nasiri, K. Hybridizing ANN-NSGA-II Model with Genetic Programming Method for Reservoir Operation Rule Curve Determination (Case Study Zayandehroud Dam Reservoir). Soft Comput. 2021, 25, 14081–14108. [Google Scholar] [CrossRef]
- Ngoc, T.A.; Hiramatsu, K.; Harada, M. Optimizing the Rule Curves of Multi-Use Reservoir Operation Using a Genetic Algorithm with a Penalty Strategy. Paddy Water Environ. 2014, 12, 125–137. [Google Scholar] [CrossRef]
- Bahrami, N.; Afshar, A.; Afshar, M.H. An agent-based framework for simulating interactions between reservoir operators and farmers for reservoir management with dynamic demands. Agric. Water Manag. 2022, 259, 107237. [Google Scholar] [CrossRef]
- Beshavard, M.; Adib, A.; Ashrafi, S.M.; Kisi, O. Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition. Agric. Water Manag. 2022, 274, 107948. [Google Scholar] [CrossRef]
- Moeini, R.; Hadiyan, P.P. Hybrid methods for reservoir operation rule curve determination considering uncertain future condition. Sustain. Comput. Inform. Syst. 2022, 35, 100727. [Google Scholar] [CrossRef]
- Luo, P.; Sun, Y.; Wang, S.; Wang, S.; Lyu, J.; Zhou, M.; Nakagami, K.; Takara, K.; Nover, D. Historical assessment and future sustainability challenges of Egyptian water resources management. J. Clean. Prod. 2020, 263, 121154. [Google Scholar] [CrossRef]
- Ji, C.; Jiang, Z.; Sun, P.; Zhang, Y.; Wang, L. Research and application of multidimensional dynamic programming in cascade reservoirs based on multilayer nested structure. J. Water Resour. Plan. Manag. 2015, 141, 04014090. [Google Scholar] [CrossRef]
- To, T.N.; Vu, H.C.; Le, H. An optimisation approach for the operating rule curves of the A Vuong reservoir, Vietnam. Water Supply 2022, 22, 7750–7766. [Google Scholar] [CrossRef]
- Thongwan, T.; Kangrang, A.; Prasanchum, H. Multi-objective future rule curves using conditional tabu search algorithm and conditional genetic algorithm for reservoir operation. Heliyon 2019, 5, e02401. [Google Scholar] [CrossRef]
- Kangrang, A.; Prasanchum, H.; Hormwichian, R. Development of future rule curves for multipurpose reservoir operation using conditional genetic and tabu search algorithms. Adv. Civ. Eng. 2018, 6474870. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Z.; Zhou, X.; Wen, B.; Zhang, C. Hybrid algorithm of gene clustering based on GPU. J. Softw. Eng. 2017, 11, 183–193. [Google Scholar] [CrossRef]
- Rouzegari, N.; Hassanzadeh, Y.; Sattari, M.T. Using the hybrid simulated annealing-M5 tree algorithms to extract the if-then operation rules in a single reservoir. Water Resour. Manag. 2019, 33, 3655–3672. [Google Scholar] [CrossRef]
- Afshar, M.H. A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach. Adv. Eng. Softw. 2010, 41, 188–195. [Google Scholar] [CrossRef]
- Ashrafi, S.M.; Mahmoudi, M. Developing a semi-distributed decision support system for great Karun water resources system. J. Appl. Res. Water Wastewater 2019, 6, 16–24. [Google Scholar] [CrossRef]
- Bashiri-Atrabi, H.; Qaderi, K.; Rheinheimer, D.E.; Sharifi, E. Application of harmony search algorithm to reservoir operation optimization. Water Resour. Manag. 2015, 29, 5729–5748. [Google Scholar] [CrossRef]
- Ming, B.; Chang, J.X.; Huang, Q.; Wang, Y.M.; Huang, S.Z. Optimal operation of multi-reservoir system based on cuckoo search algorithm. Water Resour. Manag. 2015, 29, 5671–5687. [Google Scholar] [CrossRef]
- Yelghi, A.; Köse, C. A modified firefly algorithm for global minimum optimization. Appl. Soft Comput. 2018, 62, 29–44. [Google Scholar] [CrossRef]
- Jing, Y.; Shoulin, Y.; Hang, L. An improved particle filter based on firefly algorithm used for indoor localization. J. Softw. Eng. 2017, 11, 224–229. [Google Scholar] [CrossRef]
- Udaiyakumar, K.C.; Chandrasekaran, M. Application of firefly algorithm in job shop scheduling problem for minimization of make span. Procedia Eng. 2014, 97, 1798–1807. [Google Scholar] [CrossRef]
- Bharathi Raja, S.; Sathiya Narayanan, N.; Srinivas Pramod, C.V.; Ragunathan, A.; Raju Vinesh, S.; Vamshee Krishna, K. Optimization of constrained machining parameters in turning operation using firefly algorithm. J. Appl. Sci. 2012, 12, 1038–1042. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly Algorithm, Lévy Flights and Global Optimization. In Research and Development in Intelligent Systems XXVI; Bramer, M., Ellis, R., Petridis, M., Eds.; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O., Zeugmann, T., Eds.; SAGA 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792. [Google Scholar] [CrossRef]
- Reynolds, R.G. An Introduction to Cultural Algorithms. In Proceedings of the 3rd Annual Conference on Evolutionary Programming; World Scientific Publishing: Singapore, 1994; pp. 131–139. [Google Scholar]
- Reynolds, R.G.; Ali, M.Z. Exploring Knowledge and Population Swarms via an Agent-Based Cultural Algorithms Simulation Toolkit (CAT). In Proceedings of the IEEE Congress on Computational Intelligence, Singapore, 25–28 September 2007. [Google Scholar] [CrossRef]
- Reynolds, R.G.; Peng, B. Knowledge Learning and Social Swarms in Cultural Systems. J. Math. Sociol. 2005, 29, 115–132. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Liu, P.; Chen, G. Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. J. Hydrol. 2010, 391, 124–132. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2008; ISBN 978-1-905986-10-1. [Google Scholar]
- Kangrang, A.; Srikamol, N.; Hormwichian, R.; Prasanchum, H.; Sriwanpheng, O. Alternative Approach of Firefly Algorithm for Flood Control Rule Curves. Asian J. Sci. Res. 2019, 12, 431–439. [Google Scholar] [CrossRef]
- SeethaRam, K.V. Three level rule curves for optimum operation of a multipurpose reservoir using genetic algorithms. Water Resour. Manag. 2021, 35, 353–368. [Google Scholar] [CrossRef]
- Kangrang, A.; Prasanchum, H.; Hormwichian, R. Active future rule curves for multi-purpose reservoir operation on the impact of climate and land use changes. J. Hydro-Environ. Res. 2019, 24, 1–13. [Google Scholar] [CrossRef]
- Pham, D.T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm; Technical report; Manufacturing Engineering Centre, Cardiff University: Cardiff, UK, 2005. [Google Scholar]
- Turgeon, A. Stochastic optimization of multi-reservoir operation: The optimal reservoir trajectory approach. Water Resour. Res. 2007, 43, 1–10. [Google Scholar] [CrossRef]
- Sriworamas, K.; Kangrang, A.; Thongwan, T.; Prasanchum, H. Optimal Reservoir of Small Reservoirs by Optimization Techniques on Reservoir Simulation Model. Adv. Civ. Eng. 2021, 2021, 6625743. [Google Scholar] [CrossRef]
Situation | RORC | Frequency (Times/Year) | Volume (Million Cubic Meter) | Time Period (Year) | ||
---|---|---|---|---|---|---|
Average | Maximum | Average | Maximum | |||
Water scarcity | RC1-Current | 0.962 | 45.884 | 154.000 | 13.500 | 14.000 |
RC2-Avr_FA | 0.584 | 21.378 | 130.000 | 2.500 | 3.000 | |
RC3-Avr_ABC-CA | 0.464 | 19.926 | 126.000 | 1.684 | 3.000 | |
RC4-Fre_FA | 0.782 | 38.411 | 142.000 | 6.000 | 8.000 | |
RC5-Fre_ABC-CA | 0.994 | 38.407 | 140.000 | 10.500 | 12.000 | |
Excess water | RC1-Current | 0.754 | 113.402 | 476.959 | 4.000 | 6.000 |
RC2-Avr_FA | 0.794 | 89.226 | 479.080 | 3.000 | 5.000 | |
RC3-Avr_ABC-CA | 0.797 | 86.844 | 465.867 | 3.000 | 4.000 | |
RC4-Fre_FA | 0.704 | 89.381 | 465.083 | 2.000 | 4.000 | |
RC5-Fre_ABC-CA | 0.627 | 85.641 | 436.372 | 2.000 | 3.000 |
Situation | RORC | Frequency (Times/Year) | Volume (MCM) | Time Period (Year) | |||
---|---|---|---|---|---|---|---|
Average | Maximum | Average | Maximum | ||||
Water scarcity | RC1-Current | μ | 0.971 | 42.445 | 131.774 | 17.442 | 22.637 |
σ | 0.032 | 6.831 | 36.226 | 6.804 | 4.937 | ||
RC2-Avr_FA | μ | 0.673 | 18.014 | 110.824 | 2.653 | 5.292 | |
σ | 0.109 | 8.224 | 29.344 | 0.968 | 2.447 | ||
RC3-Avr_ABC-CA | μ | 0.473 | 16.271 | 108.097 | 2.307 | 4.065 | |
σ | 0.106 | 7.224 | 27.744 | 0.747 | 2.044 | ||
RC4-Fre_FA | μ | 0.811 | 33.227 | 120.224 | 6.242 | 10.388 | |
σ | 0.108 | 7.723 | 34.220 | 3.584 | 4.335 | ||
RC5-Fre_ABC-CA | μ | 0.989 | 33.407 | 119.379 | 15.124 | 18.066 | |
σ | 0.051 | 6.837 | 30.055 | 7.225 | 5.097 | ||
Excess water | RC1-Current | μ | 0.699 | 91.994 | 358.622 | 3.009 | 7.717 |
σ | 0.107 | 20.931 | 77.022 | 1.554 | 2.249 | ||
RC2-Avr_FA | μ | 0.638 | 68.734 | 328.771 | 2.557 | 5.334 | |
σ | 0.155 | 18.984 | 81.229 | 0.899 | 2.227 | ||
RC3-Avr_ABC-CA | μ | 0.557 | 66.221 | 324.073 | 2.458 | 5.365 | |
σ | 0.104 | 17.001 | 80.177 | 0.975 | 2.005 | ||
RC4-Fre_FA | μ | 0.687 | 80.812 | 350.401 | 2.844 | 6.113 | |
σ | 0.110 | 19.003 | 79.773 | 1.098 | 2.502 | ||
RC5-Fre_ABC-CA | μ | 0.644 | 79.991 | 345.374 | 3.009 | 6.302 | |
σ | 0.105 | 20.224 | 77.780 | 1.224 | 2.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phumiphan, A.; Kosasaeng, S.; Sivanpheng, O.; Hormwichian, R.; Kangrang, A. An Alternative Approach Using the Firefly Algorithm and a Hybrid Method Based on the Artificial Bee Colony and Cultural Algorithm for Reservoir Operation. Water 2024, 16, 816. https://doi.org/10.3390/w16060816
Phumiphan A, Kosasaeng S, Sivanpheng O, Hormwichian R, Kangrang A. An Alternative Approach Using the Firefly Algorithm and a Hybrid Method Based on the Artificial Bee Colony and Cultural Algorithm for Reservoir Operation. Water. 2024; 16(6):816. https://doi.org/10.3390/w16060816
Chicago/Turabian StylePhumiphan, Anujit, Suwapat Kosasaeng, Ounla Sivanpheng, Rattana Hormwichian, and Anongrit Kangrang. 2024. "An Alternative Approach Using the Firefly Algorithm and a Hybrid Method Based on the Artificial Bee Colony and Cultural Algorithm for Reservoir Operation" Water 16, no. 6: 816. https://doi.org/10.3390/w16060816
APA StylePhumiphan, A., Kosasaeng, S., Sivanpheng, O., Hormwichian, R., & Kangrang, A. (2024). An Alternative Approach Using the Firefly Algorithm and a Hybrid Method Based on the Artificial Bee Colony and Cultural Algorithm for Reservoir Operation. Water, 16(6), 816. https://doi.org/10.3390/w16060816