Characteristics of Dry and Wet Changes and Future Trends in the Tarim River Basin Based on the Standardized Precipitation Evapotranspiration Index
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources and Methods
2.2.1. Data Sources
2.2.2. SPEI Calculation Method
2.2.3. Drought Identification Using Run Theory
2.2.4. BEAST Mutation Test
- (1)
- Calculate the probability density function of the observed time series.
- (2)
- Utilize dynamic programming for forward recursion.
- (3)
- Employ Bayesian rules for stochastic backtracking, considering the quantity and positioning of change points.
2.2.5. Empirical Orthogonal Function Decomposition (EOF)
- (1)
- Convert the SPEI calculated for various meteorological stations into a data matrix describing the meteorological field of the region. Assume there are a total of m meteorological stations, each with n sample values, denoted as 1, 2, 3,…, m, 1, 2, …, n:
3. Results and Analysis
3.1. Characteristics of Dry and Wet Changes in the TRB
3.2. Spatial Patterns of Drought and Wetness Variability in the TRB
3.3. Analysis of the Causes of Wet and Dry Changes in the TRB
3.4. Future Trends of Wet and Dry Changes in the TRB
4. Discussion
5. Conclusions
- (1)
- From the latter part of the 1980s to the conclusion of the 1990s, the TRB showed a clear trend of warming and humidification, but from 1998 onwards, the basin as a whole began to change from wetness to dryness, and the proportion of mild drought, moderate drought, and extreme drought notably expanded at all measured sites. Since then, the proportion of mild drought, moderate drought, and extreme drought has increased significantly.
- (2)
- The salient features of the spatial distribution of drought in the TRB are “more in the north and less in the south”, but drought severity characteristics are “less in the north and more in the south”. Overall, the drought severity and the spatial distribution of the number of droughts have little consistency, and droughts are frequent in the north, whereas they are severe in the south. In other words, the severity and frequency of drought events do not exhibit spatial consistency, with frequent but less severe droughts in the north and fewer but more severe droughts in the south.
- (3)
- There were three main types of spatial modes in the TRB: regionally consistent, north–south opposite, and east–west opposite. About 75% of the cumulative variance contribution was attributed to the first three modes, with the first mode primarily characterizing the basin.
- (4)
- Anticipated future climate change will elevate drought risk in the TRB, exacerbating the drought trend and concentrating the spatial distribution more in the basin’s center and less at its periphery.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, F.; Coppola, E.; Raffaele, F. Threatening Levels of Cumulative Stress Due to Hydroclimatic Extremes in the 21st Century. NPJ Clim. Atmos. Sci. 2018, 1, 18. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, Y. Spatio-Temporal Variations in Extreme Drought in China during 1961–2015. J. Geogr. Sci. 2019, 29, 67–83. [Google Scholar] [CrossRef]
- Satoh, Y.; Yoshimura, K.; Pokhrel, Y.; Kim, H.; Shiogama, H.; Yokohata, T.; Hanasaki, N.; Wada, Y.; Burek, P.; Byers, E.; et al. The Timing of Unprecedented Hydrological Drought under Climate Change. Nat. Commun. 2022, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
- CRED. Human Cost of Disasters: An Overview of the Last 20 Years; Centre for Research on the Epidemiology of Disasters: Brussels, Belgium, 2020. [Google Scholar]
- UNDRR. Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2022. [Google Scholar]
- Singh, C.; Jain, G.; Sukhwani, V.; Shaw, R. Losses and Damages Associated with Slow-Onset Events: Urban Drought and Water Insecurity in Asia. Curr. Opin. Environ. Sustain. 2021, 50, 72–86. [Google Scholar] [CrossRef]
- Ault, T.R. On the Essentials of Drought in a Changing Climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, X.; Wang, S.; Zhou, G. Past and Future Adverse Response of Terrestrial Water Storages to Increased Vegetation Growth in Drylands. NPJ Clim. Atmos. Sci. 2023, 6, 113. [Google Scholar] [CrossRef]
- Kao, S.-C.; Govindaraju, R.S. A Copula-Based Joint Deficit Index for Droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Goulden, M.L.; Bales, R.C. California Forest Die-off Linked to Multi-Year Deep Soil Drying in 2012–2015 Drought. Nat. Geosci. 2019, 12, 632–637. [Google Scholar] [CrossRef]
- He, B.; Lü, A.; Wu, J.; Zhao, L.; Liu, M. Drought Hazard Assessment and Spatial Characteristics Analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, F.; Liu, W.; Liu, J.; Wang, H. Spatio-Temporal Patterns of Drought Evolution over the Beijing-Tianjin-Hebei Region, China. J. Geogr. Sci. 2019, 29, 863–876. [Google Scholar] [CrossRef]
- Ling, H.; Xu, H.; Fu, J. Changes in Intra-Annual Runoff and Its Response to Climate Change and Human Activities in the Headstream Areas of the Tarim River Basin, China. Quat. Int. 2014, 336, 158–170. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Y.; Li, W.; Wang, H.; Li, X. Impacts of Temperature and Precipitation on Runoff in the Tarim River during the Past 50 Years: Impacts of Temperature and Precipitation on Runoff in the Tarim River during the Past 50 Years. J. Arid Land 2011, 3, 220–230. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, B.; Ma, B. Daily SPEI Reveals Long-Term Change in Drought Characteristics in Southwest China. Chin. Geogr. Sci. 2018, 28, 680–693. [Google Scholar] [CrossRef]
- Chao, N.; Wang, Z.; Jiang, W.; Chao, D. A Quantitative Approach for Hydrological Drought Characterization in Southwestern China Using GRACE. Hydrogeol. J. 2016, 24, 893–903. [Google Scholar] [CrossRef]
- Ault, T.R.; Mankin, J.S.; Cook, B.I.; Smerdon, J.E. Relative Impacts of Mitigation, Temperature, and Precipitation on 21st-Century Megadrought Risk in the American Southwest. Sci. Adv. 2016, 2, e1600873. [Google Scholar] [CrossRef]
- Mann, M.E.; Gleick, P.H. Climate Change and California Drought in the 21st Century. Proc. Natl. Acad. Sci. USA 2015, 112, 3858–3859. [Google Scholar] [CrossRef]
- Ding, Y.; Gong, X.; Xing, Z.; Cai, H.; Zhou, Z.; Zhang, D.; Sun, P.; Shi, H. Attribution of Meteorological, Hydrological and Agricultural Drought Propagation in Different Climatic Regions of China. Agric. Water Manag. 2021, 255, 106996. [Google Scholar] [CrossRef]
- Van Der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based Global Data Set of Dry and Wet Spells for 1901–2009. JGR Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of Anthropogenic Impacts on Global Drought Frequency, Duration, and Intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef]
- Laimighofer, J.; Laaha, G. How Standard Are Standardized Drought Indices? Uncertainty Components for the SPI & SPEI Case. J. Hydrol. 2022, 613, 128385. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Dai, A. Drought under Global Warming: A Review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Chen, Y.; Li, D.; Zuo, J.; Zhu, N.; Chen, Z. Has the Bosten Lake Basin Been Dry or Wet during the Climate Transition in Northwest China in the Past 30 Years? Theor. Appl. Climatol. 2020, 141, 627–644. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, L.; He, Y.; Zhang, Y.; Chen, Y.; Yao, S.; Yang, W.; Sun, Q. Effects and Contributions of Meteorological Drought on Agricultural Drought under Different Climatic Zones and Vegetation Types in Northwest China. Sci. Total Environ. 2022, 821, 153270. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and Future Climate Change in Northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Huang, J.; Ma, J.; Guan, X.; Li, Y.; He, Y. Progress in Semi-Arid Climate Change Studies in China. Adv. Atmos. Sci. 2019, 36, 922–937. [Google Scholar] [CrossRef]
- Wei, K.; Wang, L. Reexamination of the Aridity Conditions in Arid Northwestern China for the Last Decade. J. Clim. 2013, 26, 9594–9602. [Google Scholar] [CrossRef]
- Yao, J.; Mao, W.; Chen, J. DILINUER Tuoliewubieke. Signal and impact of wet-to-dry shift over Xinjiang, China. Acta Geogr. Sin. 2021, 76, 57–72. [Google Scholar]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-Based Evaluation of Drought Events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Deng, H.; Tang, Q.; Yun, X.; Tang, Y.; Liu, X.; Xu, X.; Sun, S.; Zhao, G.; Zhang, Y.; Zhang, Y. Wetting Trend in Northwest China Reversed by Warmer Temperature and Drier Air. J. Hydrol. 2022, 613, 128435. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Xu, C.; Hao, X. Effects of Climate Change on Water Resources in Tarim River Basin, Northwest China. J. Environ. Sci. 2007, 19, 488–493. [Google Scholar] [CrossRef]
- Chen, Y.; Takeuchi, K.; Xu, C.; Chen, Y.; Xu, Z. Regional Climate Change and Its Effects on River Runoff in the Tarim Basin, China. Hydrol. Process. 2006, 20, 2207–2216. [Google Scholar] [CrossRef]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L. Using Bayesian Statistics to Detect Trends in Alaskan Precipitation. Int. J. Climatol. 2021, 41, 2045–2059. [Google Scholar] [CrossRef]
- Kim, D.H.; Yoo, C.; Kim, T.-W. Application of Spatial EOF and Multivariate Time Series Model for Evaluating Agricultural Drought Vulnerability in Korea. Adv. Water Resour. 2011, 34, 340–350. [Google Scholar] [CrossRef]
- Wan, L.; Bento, V.A.; Qu, Y.; Qiu, J.; Song, H.; Zhang, R.; Wu, X.; Xu, F.; Lu, J.; Wang, Q. Drought Characteristics and Dominant Factors across China: Insights from High-Resolution Daily SPEI Dataset between 1979 and 2018. Sci. Total Environ. 2023, 901, 166362. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y.; Pan, Y. Characteristics of Drought in the Arid Region of Northwestern China. Clim. Res. 2015, 62, 99–113. [Google Scholar] [CrossRef]
- Tao, H.; Borth, H.; Fraedrich, K.; Su, B.; Zhu, X. Drought and Wetness Variability in the Tarim River Basin and Connection to Large-Scale Atmospheric Circulation. Int. J. Climatol. 2014, 34, 2678–2684. [Google Scholar] [CrossRef]
- He, J.; Li, B.; Yu, Y.; Sun, L.; Zhang, H.; Malik, I.; Wistuba, M.; Yu, R. Temporal Variability of Temperature, Precipitation and Drought Indices in Hyper-Arid Region of Northwest China for the Past 60 Years. Atmosphere 2022, 13, 1561. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Eziz, M.; Yao, J. Characteristics of Dry-Wet Changes in Xinjiang Based on SPEI Index. Atmósfera 2021. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and Prospects of Climate Change Impacts on Hydrology in the Arid Region of Northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate Change and the Ecological Responses in Xinjiang, China: Model Simulations and Data Analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Guo, E. Spatial Distribution and Temporal Variation of Drought in Inner Mongolia during 1901–2014 Using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, H.; Jiang, T.; Sun, S.; Wang, Y.; Zhao, J.; Yu, X.; Sun, J. Assessment of Global Drought Propensity and Its Impacts on Agricultural Water Use in Future Climate Scenarios. Agric. For. Meteorol. 2019, 278, 107623. [Google Scholar] [CrossRef]
- Yu, X.; Zeng, X.; Gui, D.; Li, X.; Gou, Q.; Wang, D.; Wu, J. Projection of Flash Droughts in the Headstream Area of Tarim River Basin Under Climate Change Through Bayesian Uncertainty Analysis. JGR Atmos. 2023, 128, e2022JD037634. [Google Scholar] [CrossRef]
- Zhou, L. Desert Amplification in a Warming Climate. Sci. Rep. 2016, 6, 31065. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative Cooling over the Tibetan Plateau Induced by Vegetation Growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Mao, W.; Xu, X.; Liu, Y.; Yang, Q. Response of Vegetation NDVI to Climatic Extremes in the Arid Region of Central Asia: A Case Study in Xinjiang, China. Theor. Appl. Climatol. 2018, 131, 1503–1515. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y. The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia. Acta Geogr. Sin. 2018, 73, 1309–1323. [Google Scholar]
- Potop, V.; Boroneanţ, C.; Možný, M.; Štěpánek, P.; Skalák, P. Observed Spatiotemporal Characteristics of Drought on Various Time Scales over the Czech Republic. Theor. Appl. Climatol. 2014, 115, 563–581. [Google Scholar] [CrossRef]
Model | Resolution | Nation |
---|---|---|
ACCESS-CM2 | 0.25° × 0.25° | Australian |
CanESM5 | 0.25° × 0.25° | Canada |
EC-Earth3 | 0.25° × 0.25° | Europe |
FGOALS-g3 | 0.25° × 0.25° | USA |
GFDL-ESM4 | 0.25° × 0.25° | USA |
INM-CM4-8 | 0.25° × 0.25° | Russia |
IPSL-CM6A-LR | 0.25° × 0.25° | France |
MIROC6 | 0.25° × 0.25° | Japan |
MPI-ESM1-2-LR | 0.25° × 0.25° | Germany |
NorESM2-MM | 0.25° × 0.25° | Norway |
Category | SPEI Value |
---|---|
Extremely wet | SPEI ≥ 2 |
Moderately wet | 1.5 ≤ SPEI < 2 |
Slightly wet | 1 ≤ SPEI < 1.5 |
Normal | −0.5 < SPEI < 0.5 |
Mild dry | −0.5 < SPEI ≤ −1 |
Moderate dry | −1 < SPEI ≤ −1.5 |
Extreme dry | SPEI ≤ −2 |
Mode | Explained Variance (Cumulative Explained Variance) (%) | ||
---|---|---|---|
SPEI-1 | SPEI-3 | SPEI-6 | |
1 | 56.196 (56.196) | 55.225 (55.225) | 54.083 (54.083) |
2 | 12.348 (68.544) | 12.888 (68.113) | 14.357 (68.440) |
3 | 7.001 (75.544) | 6.827 (74.940) | 6.754 (75.194) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chen, Y.; Chen, Y.; Duan, W.; Wang, J.; Wang, X. Characteristics of Dry and Wet Changes and Future Trends in the Tarim River Basin Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 880. https://doi.org/10.3390/w16060880
Li Y, Chen Y, Chen Y, Duan W, Wang J, Wang X. Characteristics of Dry and Wet Changes and Future Trends in the Tarim River Basin Based on the Standardized Precipitation Evapotranspiration Index. Water. 2024; 16(6):880. https://doi.org/10.3390/w16060880
Chicago/Turabian StyleLi, Yansong, Yaning Chen, Yapeng Chen, Weili Duan, Jiayou Wang, and Xu Wang. 2024. "Characteristics of Dry and Wet Changes and Future Trends in the Tarim River Basin Based on the Standardized Precipitation Evapotranspiration Index" Water 16, no. 6: 880. https://doi.org/10.3390/w16060880
APA StyleLi, Y., Chen, Y., Chen, Y., Duan, W., Wang, J., & Wang, X. (2024). Characteristics of Dry and Wet Changes and Future Trends in the Tarim River Basin Based on the Standardized Precipitation Evapotranspiration Index. Water, 16(6), 880. https://doi.org/10.3390/w16060880