Bacterial Communities in Zostera marina Seagrass Beds of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Determination of Environmental Parameters
2.4. DNA Extration
2.4.1. Pretreatment of Seagrass Leaf and Root Samples
2.4.2. Pretreatment of Seawater Samples
2.4.3. Pretreatment of Sediment Samples
2.5. High-Throughput Sequencing and Statistical Analysis
3. Results
3.1. Alpha Diversity
3.2. Beta Diversity
3.3. Bacterial Community
3.4. Indicator Species Analysis
3.5. Correlation Analysis between Bacterial Communities and Environmental Parameters
3.6. Functional Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lopez, B.; Hines, P.J.; Ash, C. The unrecognized value of grass. Science 2022, 377, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, R.K.F.; Cullen-Unsworth, L.C.; Jones, B.L.H.; Lilley, R.J. The planetary role of seagrass conservation. Science 2022, 377, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, R.K.F.; Ambo-Rappe, R.; Jones, B.L.; Nafie, Y.A.; Irawan, A.; Hernawan, U.E.; Moore, A.M.; Cullen-Unsworth, L.C. Indonesia’s globally significant seagrass meadows are under widespread threat. Sci. Total Environ. 2018, 634, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.J.; Zhang, D.; Chen, B.; Liu, X.M.; Ye, X.M.; Jiang, Q.T.; Zheng, X.Q.; Du, J.G.; Chen, S.Q. Mapping the seagrass conservation and restoration priorities: Coupling habitat suitability and anthropogenic pressures. Ecol. Indic. 2021, 129, 107960. [Google Scholar] [CrossRef]
- Stankovic, M.; Hayashizaki, K.; Tuntiprapas, P.; Rattanachot, E.; Prathep, A. Two decades of seagrass area change: Organic carbon sources and stock. Mar. Pollut. Bull. 2021, 163, 111913. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Shim, J.B.; Lee, S.R. First report of Labyrinthula zosterae (Labyrinthulomycetes) as the causal pathogen of wasting disease in the seagrass Zostera marina in Korea. Plant Dis. 2021, 105, 8. [Google Scholar] [CrossRef]
- Liu, S.L.; Trevathan-Tackett, S.M.; Lewis, C.J.E.; Huang, X.P.; Macreadie, P. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 2020, 54, 14750–14760. [Google Scholar] [CrossRef]
- Govers, L.L.; Lamers, L.P.M.; Bouma, T.J.; Eygensteyn, J.; Brouwer, J.; Hendriks, J.; Huijbers, C.; Katwijk, M.M. Seagrasses as indicators for coastal trace metal pollution: A global meta-analysis serving as a benchmark, and a Caribbean case study. Environ. Pollut. 2014, 195, 210–217. [Google Scholar] [CrossRef]
- Jeone, H.; Choi, J.Y.; Choi, D.H.; Noh, J.; Ra, K. Heavy metal pollution assessment in coastal sediments and bioaccumulation on seagrass (Enhalus acoroides) of Palau. Mar. Pollut. Bull. 2021, 163, 111912. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.V.; et al. A global crisis for seagrass ecosystems. Bioscience 2006, 56, 987–996. [Google Scholar] [CrossRef]
- Garcia, R.; Holaer, M.; Duarte, C.M.; Marba, N. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Glob. Chang. Biol. 2013, 19, 3629–3639. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.L.; Wang, Y.S.; Sun, C.C.; Peng, Y.L.; Deng, C. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment. Ecotoxicology 2012, 21, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Balestri, E.; Menicagli, V.; Vallerini, F.; Lardicci, C. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows? Sci. Total Environ. 2017, 605, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.F.; Zhang, X.L.; Zhang, Q.Q.; Liu, F.H.; Zhang, J.P.; Gong, J. Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages lnvolved in benthic carbon and sulfur cycling. Appl. Environ. Microbiol. 2015, 81, 6901–6914. [Google Scholar] [CrossRef] [PubMed]
- Fahimipour, A.K.; Kardish, M.R.; Jenna, M.L.; Green, J.L.; Eisen, J.A.; Stachowicz, J.J. Global-scale structure of the eelgrass microbiome. Appl. Environ. Microbiol. 2017, 83, e03391-16. [Google Scholar] [CrossRef]
- Kleindienst, S.; Ramette, A.; Amann, R.; Knittel, K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ. Microbiol. 2012, 14, 2689–2710. [Google Scholar] [CrossRef]
- Christiaen, B.; McDonald, A.; Cebrian, J.; Ortmann, A.C. Response of the microbial community to environmental change during seagrass transplantation. Aquat. Bot. 2013, 109, 31–38. [Google Scholar] [CrossRef]
- Vogel, M.A.; Mason, O.U.; Miller, T. Composition of seagrass phyllosphere microbial communities suggests rapid environmental regulation of community structure. FEMS Microbiol. Ecol. 2021, 97, fiab013. [Google Scholar] [CrossRef]
- Lachnit, T.; Blümel, M.; Imhoff, J.F.; Wahl, M. Specific epibacterial communities on macroalgae: Phylogeny matters more than habitat. Aquat Biol. 2009, 5, 181–186. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Zhou, Y.; Yue, S.; Zhang, X.; Gu, R.; Zhang, Y.; Qiao, Y.; Liu, M. Long-term changes in the unique and largest seagrass meadows in the Bohai Sea (China) using satellite (1974–2019) and sonar data: Implication for conservation and restoration. Remote Sens. 2021, 13, 856. [Google Scholar] [CrossRef]
- Ugarelli, K.; Laas, P.; Stingl, U. The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites. Microorganisms 2018, 7, 4. [Google Scholar] [CrossRef]
- Redford, A.J.; Bowers, R.M.; Knight, R.; Linhart, Y.B.; Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 2010, 12, 2885–2893. [Google Scholar] [CrossRef]
- Vorhilt, J.A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Womack, A.M.; Artaxo, P.; Ishida, Y.; Mueller, R.; Saleska, S.; Wiedemann, K.; Bohanman, B.J.M.; Green, J. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest. Biogeosciences 2015, 12, 6337–6349. [Google Scholar] [CrossRef]
- Mejia, A.Y.; Rotini, A.; Lacasella, F.; Bookman, R.; Thaller, M.C.; Shem-Tovd, R.; Wintersd, G.; Migliore, L. Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea. Ecol. Indic. 2016, 60, 1150–1163. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Wang, X.; Sun, H.; Zhang, Y.; Ju, F.; Thompson, F.; Zhang, X. Genomic Analysis Reveals Adaptation of Vibrio campbellii to the Hadal Ocean. Appl. Environ. Microb. 2022, 88, e0057522. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, G.; Yan, B.C.; Lee, N.L.Y.; Ooi, J.L.S.; Lee, J.N.; Huang, D.; Wainwright, B.J. Spatial and structural factors shape seagrass-associated bacterial communities in Singapore and Peninsular Malaysia. Front. Mar. Sci. 2021, 8, 659180. [Google Scholar] [CrossRef]
- Li, L.; Lu, J.; Zhan, P.; Qiu, Q.; Chen, J.; Xiong, J. RNA-seq analysis unveils temperature and nutrient adaptation mechanisms relevant for pathogenicity in Vibrio parahaemolyticus. Aquaculture 2022, 558, 738397–738406. [Google Scholar] [CrossRef]
- Muehe, E.M.; Gerhardt, S.; Schink, B.; Kappler, A. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiol. Ecol. 2009, 70, 335–343. [Google Scholar] [CrossRef]
- Podgorsek, L.; Imhoff, J.F. Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat. Microb. Ecol. 1999, 17, 255–265. [Google Scholar] [CrossRef]
- Hutt, L.P. Taxonomy, Physiology and Biochemistry of the Sulfur Bacteria. Ph.D. Theses, University of Plymouth, Plymouth, UK, 2017. [Google Scholar] [CrossRef]
- Roesch, L.; Camargo, F.A.O.; Bento, F.M.; Triplett, E. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil. 2007, 302, 91–104. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, F.X.; Zhang, F.F.; Zhou, K. Analysis of bacterial community functional diversity in late-stage shrimp (Litopenaeus vannamei) ponds using Biolog EcoPlates and PICRUSt2. Aquaculture 2021, 546, 737288. [Google Scholar] [CrossRef]
Bacteria | Transparency | Nitrite | Nitrate | Ammonium | Active Phosphate |
---|---|---|---|---|---|
Vibrio | 0.964 * | 0.039 | −0.302 | −0.497 | −0.859 |
Alphaproteobacteria unclassified | 0.539 | 0.962 * | −0.996 * | −0.973 * | 0.165 |
Bosea | 0.356 | 0.951 * | −0.926 | −0.918 | 0.375 |
Photobacterium | 0.724 | 0.844 | −0.939 | −0.998 * | −0.061 |
Methylophagaceae unclassified | 0.741 | −0.331 | 0.072 | −0.050 | −0.985 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Q.; Yao, Y.; Tan, F.; Jiang, L.; Shi, W.; Yang, W.; Liu, J. Bacterial Communities in Zostera marina Seagrass Beds of Northern China. Water 2024, 16, 935. https://doi.org/10.3390/w16070935
Zhang Y, Wang Q, Yao Y, Tan F, Jiang L, Shi W, Yang W, Liu J. Bacterial Communities in Zostera marina Seagrass Beds of Northern China. Water. 2024; 16(7):935. https://doi.org/10.3390/w16070935
Chicago/Turabian StyleZhang, Yong, Qiuzhen Wang, Yuan Yao, Faqi Tan, Lin Jiang, Weijie Shi, Wen Yang, and Jiayi Liu. 2024. "Bacterial Communities in Zostera marina Seagrass Beds of Northern China" Water 16, no. 7: 935. https://doi.org/10.3390/w16070935
APA StyleZhang, Y., Wang, Q., Yao, Y., Tan, F., Jiang, L., Shi, W., Yang, W., & Liu, J. (2024). Bacterial Communities in Zostera marina Seagrass Beds of Northern China. Water, 16(7), 935. https://doi.org/10.3390/w16070935