Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor and Operation
2.2. Seed Sludge and Water
2.3. Batch Experiment
2.4. Analytical Methods
2.4.1. The Analysis of the Microbial Community
2.4.2. Water Quality Testing
3. Results and Discussion
3.1. Long-Term Acclimatization Characteristics of Activated Sludge
3.2. The Mineralization and Dechlorination of 2,4,6-TCP
3.3. The EPS Content of the Activated Sludge
3.4. Bacterial Abundance and Functional Gene Analysis
3.4.1. Influences of Different Carbon Sources on Bacterial Abundance
3.4.2. The Impacts of Different Carbon Sources on the Abundance of Functional Genes
3.4.3. Distribution Characteristics of Functional Genes in Different Microbial Communities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.Z.; Mondal, P.K.; Sabir, S. Bioremediation of 2-chlorophenol containing wastewater by aerobic granules-kinetics and toxicity. J. Hazard. Mater. 2011, 190, 222–228. [Google Scholar] [CrossRef]
- Sze, M.F.F.; Mckay, G. An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal. Environ. Pollut. 2010, 158, 1669–1674. [Google Scholar] [CrossRef]
- Barik, A.J.; Gogate, P.R. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs. Ultrason. Sonochemistry 2018, 40, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cui, J.; Tang, R.; Li, F.; Zhang, B. Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability. Chem. Eng. J. 2017, 326, 647–655. [Google Scholar] [CrossRef]
- Wang, C.C.; Lee, C.M.; Kuan, C.H. Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus. Chemosphere 2000, 41, 447–452. [Google Scholar] [CrossRef]
- Assadi, A.; Alimoradzadeh, R.; Movahedyan, H.; Amin, M.M. Intensified 4-chlorophenol biodegradation in an aerobic sequencing batch reactor: Microbial and kinetic properties evaluation. Environ. Technol. Innov. 2021, 21, 101243. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Z. Effects of different carbon sources on 2,4,6-trichlorophenol degradation in the activated sludge process. Bioprocess Biosyst. Eng. 2020, 43, 2143–2152. [Google Scholar] [CrossRef]
- Machado, L.M.M.; Lutke, S.F.; Perondi, D.; Godinho, M.; Oliveira, M.L.S.; Collazzo, G.C.; Dotto, G.L. Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. J. Environ. Chem. Eng. 2020, 8, 104473. [Google Scholar] [CrossRef]
- Miao, M.; Zhang, Y.; Shu, L.; Zhang, J.; Kong, Q.; Li, N. Development and characterization of the 2,4,6-trichlorophenol (2,4,6-TCP) aerobic degrading granules in sequencing batch airlift reactor. Int. Biodeterior. Biodegrad. 2014, 95, 61–66. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Wu, D.; Li, Z.; Cui, Y. Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP) in long-term sludge culture and their effects on sludge reduction and biological inhibition. Water Res. 2013, 47, 279–288. [Google Scholar] [CrossRef]
- Ziagova, M.; Kyriakou, G.; Liakopoulou-Kyriakides, M. Co-metabolism of 2,4-dichlorophenol and 4-Cl-m-cresol in the presence of glucose as an easily assimilated carbon source by Staphylococcus xylosus. J. Hazard. Mater. 2009, 163, 383–390. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhang, H.; Gong, W.; Sun, X.; Gao, B. Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor. Chemosphere 2007, 69, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Reardon, K.F.; Mosteller, D.C.; Rogers, J.B.; Duteau, N.M.; Kim, K. Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ. Health Perspect. 2002, 110, 1005–1011. [Google Scholar] [CrossRef]
- Luo, W.; Zhu, X.; Chen, W.; Duan, Z.; Wang, L.; Zhou, Y. Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds-chlorinated ethylenes as the model. Water Sci. Technol. 2014, 69, 1971–1983. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, B.K.; Wiesmann, U. Enhanced anaerobic degradation of benzeneby enrichment of mixed microbial cultureand optimization of the culture medium. Appl. Microbiol. Biotechnol. 1995, 43, 178–187. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M.; Barcenas-Torres, J.D.; Moreno-Medina, C.U.; Garcia-Mena, J.; Garibay-Orijel, C.; Rios-Leal, E.; Rinderknecht-Seijas, N. Influence of discontinuing feeding degradable cosubstrate on the performance of a fluidized bed bioreactor treating a mixture of trichlorophenol and phenol. J. Environ. Manag. 2012, 113, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Carucci, A.; Milia, S.; De Gioannis, G.; Piredda, M. Acetate-fed aerobic granular sludge for the degradation of 4-chlorophenol. J. Hazard. Mater. 2009, 166, 483–490. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Chen, X.; Li, Y. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresour. Technol. 2018, 255, 22–28. [Google Scholar] [CrossRef]
- Ma, J.; Quan, X.; Yang, Z.; Li, A. Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation. Chem. Eng. J. 2012, 181, 144–151. [Google Scholar] [CrossRef]
- Carucci, A.; Milia, S.; Cappai, G.; Muntoni, A. A direct comparison amongst different technologies (aerobic granular sludge, SBR and MBR) for the treatment of wastewater contaminated by 4-chlorophenol. J. Hazard. Mater. 2010, 177, 1119–1125. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, M.; Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012, 6, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Acata, S.; Vital-Jacome, M.; Perez-Sandoval, M.V.; Navarro-Noya, Y.E.; Thalasso, F.; Luna-Guido, M.; Conde-Barajas, E.; Dendooven, L. Microbial community structure in aerobic and fluffy granules formed in a sequencing batch reactor supplied with 4-chlorophenol at different settling times. J. Hazard. Mater. 2018, 342, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Z. Successful application of municipal domestic wastewater as a co-substrate in 2,4,6-trichlorophenol degradation. Chemosphere 2021, 280, 130707. [Google Scholar] [CrossRef]
- Apha. Standard Methods for the Examination of Water and Wastewater, 24th ed.; United Book Press: Washington, DC, USA, 1998. [Google Scholar]
- Li, X.Y.; Yang, S.F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 2007, 41, 1022–1030. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, S.; Chuang, C.; Miller, E.J.; Schwehr, K.A.; Santschi, P.H. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 2011, 126, 27–36. [Google Scholar] [CrossRef]
- Vetrovsky, T.; Steffen, K.T.; Baldrian, P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 2014, 9, e89108. [Google Scholar] [CrossRef]
- Kindaichi, T.; Yamaoka, S.; Uehara, R.; Ozaki, N.; Ohashi, A.; Albertsen, M.; Nielsen, P.H.; Nielsen, J.L. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiol. Ecol. 2016, 92, fiw078. [Google Scholar] [CrossRef]
- Liang, J.; Fang, X.; Lin, Y.; Wang, D. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. J. Hazard. Mater. 2018, 347, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Kim, K.; Yin, C.; Jeon, C.O.; Im, W.; Kim, K.; Lee, S. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Curr. Microbiol. 2003, 47, 462–466. [Google Scholar] [CrossRef]
- Ju, F.; Zhang, T. Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing. Microb. Ecol. 2014, 68, 235–246. [Google Scholar] [CrossRef]
- Mannisto, M.K.; Tiirola, M.A.; Puhakka, J.A. Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 2001, 12, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Rutgers, M.; Breure, A.M.; van Andel, J.G.; Duetz, W.A. Growth yield coefficients of Sphingomonas sp. strain P5 on various chlorophenols in chemostat culture. Appl. Microbiol. Biotechnol. 1997, 48, 656–661. [Google Scholar] [CrossRef]
- Leonard, D.; Lindley, N.D. Growth of Ralstonia eutropha on inhibitory concentrations of phenol: Diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enzym. Microb. Technol. 1999, 25, 271–277. [Google Scholar] [CrossRef]
- Baggi, G.; Cavalca, L.; Francia, P.; Zangrossi, M. Chlorophenol removal from soil suspensions: Effects of a specialised microbial inoculum and a degradable analogue. Biodegradation 2004, 15, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Matus, V.; Sanchez, M.A.; Martinez, M.; Gonzalez, B. Efficient degradation of 2,4,6-trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134(pJP4). Appl. Environ. Microbiol. 2003, 69, 7108–7115. [Google Scholar] [CrossRef] [PubMed]
- Burback, B.L.; Perry, J.J. Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl. Environ. Microbiol. 1993, 59, 1025–1029. [Google Scholar] [CrossRef]
- Burback, B.L.; Perry, J.J.; Rudd, L.E. Effect of environmental-pollutants and their metabolites on a soil mycobacterium. Appl. Microbiol. Biotechnol. 1994, 41, 134–136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Fang, H.; Li, S.; Yu, H. Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties. Water 2024, 16, 974. https://doi.org/10.3390/w16070974
Wang J, Fang H, Li S, Yu H. Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties. Water. 2024; 16(7):974. https://doi.org/10.3390/w16070974
Chicago/Turabian StyleWang, Jianguang, Haifeng Fang, Shiyi Li, and Hailan Yu. 2024. "Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties" Water 16, no. 7: 974. https://doi.org/10.3390/w16070974
APA StyleWang, J., Fang, H., Li, S., & Yu, H. (2024). Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties. Water, 16(7), 974. https://doi.org/10.3390/w16070974