Assessment of Water Productivity and Economic Viability of Greenhouse-Grown Tomatoes under Soilless and Soil-Based Cultivations
Abstract
:1. Introduction
2. Materials and Methods
- Cultivation methods:
- A: CSbased cultivation.
- B: HSless cultivation.
- Irrigation Regimes with Emitters’ Design Discharge (D):
- A: Emitter of Design discharge of 4 Lh−1 (D1).
- B: Emitter of Design discharge of 6 Lh−1 (D0.75).
- C: Emitter of Design discharge of 8 Lh−1 (D0.5).
2.1. Experimental Design
2.2. Cultivation Methods
2.3. Assessment of Drip Irrigation Emitters
2.4. Water Requirement and Irrigation Scheduling
2.5. Water Productivity
2.6. Benefit–Cost Analysis
2.7. Breakeven Levels of Production and Prices
- BP is the breakeven production level,
- FC is the fixed cost,
- P is the price per unit of product,
- VC is the variable cost per unit of product.
2.8. Revenues over Variable Cost and Revenues on Investment
- FC is the fixed cost,
- IC is the initial cost,
- RV is the residual value,
- UL is the useful life.
3. Results and Discussion
3.1. Measured Actual Irrigation Amounts
3.2. Vegetative Growth Response
3.3. Tomato Fruit Yield and Components’ Responses
3.4. Economics of Tomato Fruit Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Total Area of the Greenhouse 346.5 m2 | ||||||
---|---|---|---|---|---|---|
Item No. | Item Name | Unit | Initial Cost (SR) | Expected Life (SR) | Residual (SR) | Depreciation |
1 | Galvanized iron frame | 1 | 19,200 | 30 | 192 | 634 |
2 | Fans | 2 | 3700 | 30 | 37 | 122 |
3 | Cooling system | 10 | 950 | 4 | 0 | 238 |
4 | Control unit | 1 | 1300 | 30 | 0 | 43 |
5 | Submerged pump | 1 | 700 | 15 | 0 | 47 |
6 | Fiber glass | 9 | 12,150 | 8 | 0 | 1519 |
7 | Irrigation system water pump (1/2 H.P) | 1 | 600 | 7 | 12 | 84 |
8 | Timer | 1 | 500 | 20 | 0 | 25 |
9 | Drip irrigation | 1 | 500 | 5 | 0 | 100 |
10 | Pots | 32 | 352 | 5 | 0 | 70 |
11 | Solenoid valve | 1 | 75 | 3 | 0 | 25 |
12 | Owner’s time (opportunity cost) | 500 | ||||
13 | Land rent (opportunity cost) | 128 | ||||
Fixed cost/year | 3534 | |||||
Total Fixed cost/production period | 1555 | |||||
Fixed cost/m2 ((greenhouse area) 346.5 m2) | 4.4 |
Item | ||
---|---|---|
1 | Tomato seeds (SR) | 105 |
2 | Gravel (SR) | 75 |
3 | 1/3 Perlite + 1/3 Patmos + Botong soil (SR) | 133 |
4 | Filtered Irrigation Water m3/m2/(SR) | 98 |
5 | Electricity cost (SR) | 2 |
6 | Pesticides +fungicides/PP | 100 |
7 | Labors + marketing (SR) | 50.9 |
Total variable cost (SR) | 563.9 | |
Area of production m2 | 32 m2 | |
Variable cost per m2 (SR) | 17.6 | |
Tomato Yield/m2 | 7.48 Kg | |
Price/kg (SR) | 6.5 SR |
Item | ||
---|---|---|
1 | Tomato seeds | 105 |
2 | Gravel | 150 |
3 | Filtered Irrigation Water m3/m2/PP | 98 |
4 | Electricity K-Watt/day/greenhouse | 2 |
5 | Pesticides + fungicides/PP | 100 |
6 | Labors/PP | 50.9 |
Total | 505.9 | |
Area of production m2 | 32 m2 | |
Variable cost per m2 (SR) | 15.8 | |
Tomato Yield/m2 | 8.08 Kg | |
Price/kg (SR) | 6.5 SR |
References
- Winpenny, J.; Heinz, I.; Koo-Oshima, S. The Wealth of Waste: The Economics of Wastewater Use in Agriculture; FAO Water Report no. 35; FAO: Rome, Italy, 2010. [Google Scholar]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, M.; Albaji, M.; Nasab, S.B.; Ansari, N.A.Z. The effect of deficit irrigation on yield and yield components of greenhouse tomato (Solanum lycopersicum) in hydroponic culture in Ahvaz region, Iran. Sci. Hortic. 2019, 254, 84–90. [Google Scholar] [CrossRef]
- Nederhoff, E.; Stanghellini, C. Water use efficiency of tomatoes. Pract. Hydroponics Greenh. 2010, 115, 52–59. [Google Scholar]
- Lizarraga, A.; Boesveld, H.; Huibers, F.; Robles, C. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrig. Drain. 2003, 52, 177–188. [Google Scholar] [CrossRef]
- Estidama. Soilless Cultivation Systems. 2022. Available online: https://estidamah.gov.sa/en/publications/posters/evaluation-soilless-cultivation-systems (accessed on 5 February 2023).
- Wahb-Allah, M.A.; Alsadon, A.A.; Ibrahim, A.A. Drought tolerance of several tomato genotypes under greenhouse conditions. World Appl. Sci. J. 2011, 15, 933–940. [Google Scholar]
- Parameshwarareddy, R.; Angadi, S.S.; Biradar, M.S.; Patil, R.H. Water productivity of tomato as influenced by drip irrigation levels and substrates. J. Pharmacogn. Phytochem. 2018, 7, 1343–1346. [Google Scholar]
- Sánchez-Rodríguez, E.; Leyva, R.; Constán-Aguilar, C.; Romero, L.; Ruiz, J. How does grafting affect the ionome of cherry tomato plants under water stress? Soil Sci. Plant Nutr. 2014, 60, 145–155. [Google Scholar] [CrossRef]
- Suvo, T.; Biswas, H.; Jewel, M.; Islam; Khan, M. Impact of substrate on soilless tomato cultivation. Int. J. Agric. Res. Innov. Technol. 2017, 6, 82–86. [Google Scholar] [CrossRef]
- Abdulaziz, A.-H.; Abdulrasoul, A.-O.; Thabet, A.; Hesham, A.-R.; Khadejah, A.; Saad, M.; Abdullah, O. Tomato grafting impacts on yield and fruit quality under water stress conditions. J. Exp. Biol. Agric. Sci. 2017, 5, S136–S147. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Al-Harbi, A.R.; Wahb-Allah, M.A.; Nadeem, M.; Al-Eter, A. Impact of irrigation water quality, irrigation systems, irrigation rates and soil amendments on tomato production in sandy calcareous soil. Turk. J. Agric. For. 2010, 34, 59–73. [Google Scholar] [CrossRef]
- Naif, G.; Emin, Y.; Perihan, C.A.; Mine, A.; Yaşar, K. Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Sci. Res. Essays 2011, 6, 2147–2153. [Google Scholar] [CrossRef]
- Cámara-Zapata, J.M.; Brotons-Martínez, J.M.; Simón-Grao, S.; Martinez-Nicolás, J.J.; García-Sánchez, F. Cost–benefit analysis of tomato in soilless culture systems with saline water under greenhouse conditions. J. Sci. Food Agric. 2019, 99, 5842–5851. [Google Scholar] [CrossRef] [PubMed]
- McGee, J. Break-even analysis. In Wiley Encyclopedia of Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Elmulthum, N.A.; Zeineldin, F.I.; Al-Khateeb, S.A.; Al-Barrak, K.M.; Mohammed, T.A.; Sattar, M.N.; Mohmand, A.S. Water Use Efficiency and Economic Evaluation of the Hydroponic versus Conventional Cultivation Systems for Green Fodder Production in Saudi Arabia. Sustainability 2023, 15, 822. [Google Scholar] [CrossRef]
- Naumann, M.; Karl, R.C.; Truong, C.N.; Jossen, A.; Hesse, H.C. Lithium-ion Battery Cost Analysis in PV-household Application. Energy Procedia 2015, 73, 37–47. [Google Scholar] [CrossRef]
- Uiversity of Ohio. Green House Industry. 2017. Available online: https://u.osu.edu/greenhouse/hydroponic-crop-program-links (accessed on 20 October 2022).
- Istrate, C. Non-Current Assets Depreciation and Impairment between Legal, Accounting at Tax Rules: Evidence from Romania. Eufire 2018, 2018, 375. Available online: http://eufire.uaic.ro/wp-content/uploads/2018/12/volum_eufire_2018.pdf (accessed on 15 April 2023).
- Ullah, I.; Mao, H.; Rasool, G.; Gao, H.; Javed, Q.; Sarwar, A.; Khan, M.I. Effect of Deficit Irrigation and Reduced N Fertilization on Plant Growth, Root Morphology and Water Use Efficiency of Tomato Grown in Soilless Culture. Agronomy 2021, 11, 228. [Google Scholar] [CrossRef]
Soil Depth (cm) | θFC | θPWP (cm3/cm3) | AWC | OM (%) | Soil Particle Distribution (%) 2–0.5 mm 0.5–0.25 mm 0.25–0.05 mm < 0.05 mm | |||
---|---|---|---|---|---|---|---|---|
0–15 | 0.155 | 0.09 | 0.07 | 3 | 31.3 | 49.5 | 17.2 | 2.0 |
15–30 | 0.143 | 0.084 | 0.06 | 2 | 29.0 | 51.2 | 18.3 | 1.5 |
30–60 | 0.123 | 0.062 | 0.06 | 1 | 28.0 | 51.9 | 19.1 | 1.0 |
Cultivation Method | Emitters’ Discharge (Lh−1) | Growing Time | Height (cm) | Homogeneous Groups | Number of Leaves | Homogeneous Groups |
---|---|---|---|---|---|---|
CSbased | D1 | 16-December | 27.63 | V | 6.3 | WY |
HSless | D1 | 16-December | 23.37 | V | 5.7 | Y |
CSbased | D0.75 | 16-December | 26.17 | V | 6.3 | WY |
HSless | D0.75 | 16-December | 24.53 | V | 5.7 | Y |
CSbased | D0.5 | 16-December | 28.85 | UV | 6.6 | VY |
HSless | D0.5 | 16-December | 23.78 | V | 6.1 | XY |
CSbased | D1 | 7-March | 254.88 | A | 28.3 | A |
HSless | D1 | 7-March | 205.44 | C | 25.9 | AD |
CSbased | D0.75 | 7-March | 242 | B | 26.9 | AC |
HSless | D0.75 | 7-March | 199.56 | CD | 23.8 | DG |
CSbased | D0.5 | 7-March | 253.38 | A | 27.3 | AB |
HSless | D0.5 | 7-March | 196.69 | CD | 25.2 | BE |
Source | DF | SS | MS | F | P |
---|---|---|---|---|---|
Rep | 3 | 1976 | 659 | ||
CSbasedHSless | 1 | 7317 | 7317 | 128.22 | 0 |
Emitter discharge (D) | 2 | 1111 | 555 | 9.73 | 0.0001 |
Time (T) | 9 | 980,034 | 108,893 | 1908.18 | 0 |
CSbasedHSless*D | 2 | 806 | 403 | 7.07 | 0.0011 |
CSbasedHSless*T | 9 | 16,720 | 1858 | 32.56 | 0 |
D*T | 18 | 445 | 25 | 0.43 | 0.979 |
CSbasedHSless*D*T | 18 | 291 | 16 | 0.28 | 0.998 |
Error | 177 | 10,101 | 57 | ||
Total | 239 | 1,018,801 | |||
Grand Mean | 113.95 | CV | 6.63 |
Picking Date | CSbased Cultivation kg/Plant (STDEV) | HSless Cultivation kg/Plant (STDEV) | ||||
---|---|---|---|---|---|---|
D1 | D0.75 | D0.5 | D1 | D0.75 | D0.5 | |
21 March | 0.10 (±0.05) | 0.10 (±0.06) | 0.11 (±0.04) | 0.42 (±0.13) | 0.41 (±0.2) | 0.31 (±0.05) |
30 March | 0.32 (±0.06) | 0.24 (±0.1) | 0.21 (0.12) | 0.28 (±0.06) | 0.25 (±0.2) | 0.27 (±0.04) |
7 April | 0.35 (±0.05) | 0.28 (±0.03) | 0.24 (±0.06) | 0.71 (±0.25) | 0.40(±0.16) | 0.32 (±0.08) |
17 April | 0.69 (±0.09) | 0.80 (±0.09) | 0.31 (±0.057) | 0.20 (±0.06) | 0.33 (±0.16) | 0.27 (±0.07) |
26 April | 0.29 (±0.11) | 0.26 (±0.12) | 0.24 (±0.04) | 0.14 (±0.03) | 0.12 (±0.02) | 0.10 (±0.04) |
18 May | 0.26 (±0.05) | 0.17 (±0.11) | 0.13 (±0.06) | 0.12 (±0.04) | 0.15 (±0.08) | 0.13 (±0.05) |
TFY | 2.02 | 1.86 | 1.23 | 1.87 | 1.65 | 1.40 |
TFY m−2 | 16.16 | 14.88 | 9.84 | 14.96 | 13.2 | 13.2 |
Picking Date | CSbased Cultivation | HSless Cultivation | ||
---|---|---|---|---|
Number of Fruits per m2(STDEV) | Fruit Diameter (cm) per m2 (STDEV) | Number of Fruits per m2 (STDEV) | Fruit Diameter (cm) per m2 (STDEV) | |
21 March | 1 (±0.22) | 7.2 (±0.86) | 3 (±0.99) | 5.50 (±0.22) |
30 March | 2 (±0.42) | 6.9 (±0.43) | 3 (±0.90) | 6.7 (±0.48) |
7 April | 4 (±0.67) | 5.7 (±0.37) | 7 (±1.79) | 6.2 (±0.33) |
17 April | 7 (±1.47) | 4.5 (±0.37) | 8 (±1.64) | 5.3 (±0.41) |
26 April | 6 (±1.11) | 4.5 (±0.36) | 4 (±0.62) | 5.3 (±0.35) |
18 May | 8 (±2.24) | 3.7 (±0.89) | 7 (±0.96) | 3.9 (±0.46) |
Total = 28 | Average dia. = 5.4 | Total = 32 | Average dia. = 5.5 |
Source | DF | SS | MS | F | P |
---|---|---|---|---|---|
Rep | 3 | 153,855 | 51,285 | ||
CSbasedHSless | 1 | 2525 | 2525 | 0.3 | 0.5874 |
D | 2 | 113,101 | 56,550 | 6.64 | 0.0019 |
Picking Time (PT) | 5 | 460,463 | 92,093 | 10.81 | 0 |
CSbasedHSless*D | 2 | 14,949 | 7475 | 0.88 | 0.419 |
CSbasedHSless*PT | 5 | 649,497 | 129,899 | 15.24 | 0 |
D*PT | 10 | 59,609 | 5961 | 0.7 | 0.723 |
CSbasedHSless*D*PT | 10 | 52,505 | 5250 | 0.62 | 0.7972 |
Error | 105 | 894,865 | 8523 | ||
Total | 143 | 2,401,369 | |||
Grand mean | 246.37 | CV | 37.47 |
Method | Hydroponic Soilless | Conventional Soil-Based |
---|---|---|
yield kg/m2 | 7.48 | 8.08 |
fixed/m2 | 4.4 | 4.4 |
variable/m2 | 17.6 | 15.8 |
price/kg | 6.5 | 6.5 |
revenue/m2 | 48.6 | 52.52 |
VC + FC | 22 | 20.2 |
net profit/m2 | 26.62 | 32.32 |
fixed cost/kg | 0.58 | 0.54 |
variable cost/kg | 2.35 | 1.96 |
price/kg | 6.5 | 6.5 |
profit/kg | 3.56 | 4 |
Cultivation Method | Revenue/m2 | VC + FC | Benefit/Cost |
---|---|---|---|
Hydroponic soilless | 48.6 | 22 | 2.2 |
Conventional soil-based | 52.52 | 20.2 | 2.6 |
Method | Hydroponic Soilless | Conventional Soil-Based |
---|---|---|
Variable cost/m2 | 17.6 | 15.8 |
Fixed cost/m2 | 4.4 | 4.4 |
Total cost/m2 | 22 | 20.2 |
Revenue/m2 | 48.6 | 52.52 |
Revenue over variable cost/m2 | 31 | 36.72 |
Revenue on investment/m2 | 26.6 | 32.32 |
Cultivation Method | Breakeven Price/Yield/Production | Value |
---|---|---|
HSless | Breakeven price to cover the variable cost | 2.35 |
Breakeven price to cover the total cost | 2.93 | |
HSless | Breakeven price to cover the variable cost | 1.96 |
Breakeven price to cover the total cost | 2.5 | |
HSless | Breakeven volume for the period (163 days) | 30.4 Kg |
Breakeven yield Kg/m2 (area 32 m2) | 0.95 | |
Actual yield Kg/m2 | 7.48 | |
HSless | Breakeven volume for the period (163 days) | 53.8 Kg |
Breakeven yield Kg/m2 (area 32 m2) | 1.7 | |
Actual yield Kg/m2 | 8.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khateeb, S.A.; Zeineldin, F.I.; Elmulthum, N.A.; Al-Barrak, K.M.; Sattar, M.N.; Mohammad, T.A.; Mohmand, A.S. Assessment of Water Productivity and Economic Viability of Greenhouse-Grown Tomatoes under Soilless and Soil-Based Cultivations. Water 2024, 16, 987. https://doi.org/10.3390/w16070987
Al-Khateeb SA, Zeineldin FI, Elmulthum NA, Al-Barrak KM, Sattar MN, Mohammad TA, Mohmand AS. Assessment of Water Productivity and Economic Viability of Greenhouse-Grown Tomatoes under Soilless and Soil-Based Cultivations. Water. 2024; 16(7):987. https://doi.org/10.3390/w16070987
Chicago/Turabian StyleAl-Khateeb, Suliman Ali, Faisal Ibrahim Zeineldin, Nagat Ahmed Elmulthum, Khalid Mohammed Al-Barrak, Muhammad Naeem Sattar, Tagelsir Ahmed Mohammad, and Akbar S. Mohmand. 2024. "Assessment of Water Productivity and Economic Viability of Greenhouse-Grown Tomatoes under Soilless and Soil-Based Cultivations" Water 16, no. 7: 987. https://doi.org/10.3390/w16070987
APA StyleAl-Khateeb, S. A., Zeineldin, F. I., Elmulthum, N. A., Al-Barrak, K. M., Sattar, M. N., Mohammad, T. A., & Mohmand, A. S. (2024). Assessment of Water Productivity and Economic Viability of Greenhouse-Grown Tomatoes under Soilless and Soil-Based Cultivations. Water, 16(7), 987. https://doi.org/10.3390/w16070987