Next Article in Journal
Temporal Changes in Water and Sediment Discharges: Impacts of Climate Change and Human Activities in the Red River Basin (1958–2021) with Projections up to 2100
Previous Article in Journal
Tackling the Phylogeny of Lampreys—Insight from the Croatia’s Danube Basin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Review of the Influence of Climate Change on the Hydrologic Cycling and Gaseous Fluxes of Mercury in Boreal Peatlands: Implications for Restoration

by
Randy Kolka
1,*,
Caroline Pierce
2,†,
Isabella Garrioch
2,
Kevin Behrens
2 and
Brandy M. Toner
2
1
USDA Forest Service Northern Research Station, Grand Rapids, MN 55744, USA
2
Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, MN 55108, USA
*
Author to whom correspondence should be addressed.
Current address: Region 10 Water Division, Environmental Protection Agency, Portland, OR 97205, USA.
Water 2024, 16(8), 1154; https://doi.org/10.3390/w16081154
Submission received: 22 January 2024 / Revised: 20 March 2024 / Accepted: 15 April 2024 / Published: 19 April 2024
(This article belongs to the Section Water and Climate Change)

Abstract

Mercury (Hg) is a pollutant that bioaccumulates in the food web, leading to health issues in humans and other fauna. Although anthropogenic Hg deposition has decreased over the past 20 years, our watersheds continue to be sources of Hg to downstream communities. Wetlands, especially peatlands in the Boreal Region of the globe, play a vital role in the formation of bioaccumulative methylmercury (MeHg). Few studies have assessed how increases in temperatures such as those that have already occurred and those predicted will influence the hydrologic transport of Hg to downstream communities or the net fluxes of gaseous Hg. The results indicate that peatland pore water concentrations of MeHg are increasing with ecosystem warming, and to some degree with elevated carbon dioxide (eCO2) in the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment at the Marcell Experimental Forest (MEF) in northern Minnesota, USA. Similar to SPRUCE, in the Biological Response to A Changing Environment (BRACE) experiment in Canada, mesocosm pore water MeHg concentrations increased with soil warming. However, long-term peatland watershed streamflow fluxes of MeHg at the MEF indicate that the competing effects of climate warming and decreased atmospheric deposition have led to overall decreases in watershed MeHg transport. Mesocosm studies in the PEATCOSM experiment in Upper Michigan, USA, indicate that simulated fluctuating water tables led to higher concentrations of MeHg in peatland pore water that is available for downstream transport when water tables rise and the next runoff event occurs. Results from a winter peatland soil freeze/thaw simulation from large mesocosm cores from Jennie’s Bog at the MEF indicate higher total Hg (THg) upon soil thawing but lower MeHg, likely a result of cold temperatures limiting methylation during thawing. Although there are lower MeHg concentrations after thawing, more THg is available for methylation once soils warm. Results from PEATCOSM and the literature also suggest that plant community changes that result in higher densities of sedges also lead to elevated MeHg in pore water. From a climate warming perspective, it appears that two complementary mechanisms, both related to decomposition, are at play that lead to increased pore water MeHg concentrations with warming. First, warming increases decomposition rates, leading to a higher availability of many ions, including Hg (and sulfur) species. Higher decomposition rates also lead to increases in soluble carbon which complexes with Hg species and assists in downstream hydrologic transport. However, if streamflow is decreasing with climate change as a result of landscape-level changes in evapotranspiration as suggested at MEF, the combination of less direct watershed Hg deposition and lower streamflow results in decreases in the watershed transport of MeHg. Given changes already occurring in extreme events and the rewetting and restoration of hydrology during peatland restoration, it is likely that methylation and pore water MeHg concentrations will increase. However, the landscape-level hydrologic cycle will be key to understanding the connection to downstream aquatic communities. Finally, gaseous Hg fluxes increase with warming and lead to decreases in peatland pools of Hg that may influence future availability for downstream transport.
Keywords: methylmercury; warming; ecosystem manipulation; extreme events; carbon dioxide methylmercury; warming; ecosystem manipulation; extreme events; carbon dioxide

Share and Cite

MDPI and ACS Style

Kolka, R.; Pierce, C.; Garrioch, I.; Behrens, K.; Toner, B.M. Review of the Influence of Climate Change on the Hydrologic Cycling and Gaseous Fluxes of Mercury in Boreal Peatlands: Implications for Restoration. Water 2024, 16, 1154. https://doi.org/10.3390/w16081154

AMA Style

Kolka R, Pierce C, Garrioch I, Behrens K, Toner BM. Review of the Influence of Climate Change on the Hydrologic Cycling and Gaseous Fluxes of Mercury in Boreal Peatlands: Implications for Restoration. Water. 2024; 16(8):1154. https://doi.org/10.3390/w16081154

Chicago/Turabian Style

Kolka, Randy, Caroline Pierce, Isabella Garrioch, Kevin Behrens, and Brandy M. Toner. 2024. "Review of the Influence of Climate Change on the Hydrologic Cycling and Gaseous Fluxes of Mercury in Boreal Peatlands: Implications for Restoration" Water 16, no. 8: 1154. https://doi.org/10.3390/w16081154

APA Style

Kolka, R., Pierce, C., Garrioch, I., Behrens, K., & Toner, B. M. (2024). Review of the Influence of Climate Change on the Hydrologic Cycling and Gaseous Fluxes of Mercury in Boreal Peatlands: Implications for Restoration. Water, 16(8), 1154. https://doi.org/10.3390/w16081154

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop