Methods for Constructing a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in Historic and Cultural Districts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Construction Method of a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in the Historic and Cultural Districts of Beijing
2.2.1. Determination Method for the 1 h Rainfall Intensity Water Logging Index in Beijing’s Historic and Cultural Districts
2.2.2. Determination Method for the Waterlogging Risk Index in Beijing’s Historic and Cultural Districts
2.2.3. Construction Method for a Waterlogging Early-Warning Model in Beijing’s Historic and Cultural Districts
3. Results and Discussion
3.1. Determination of 1 h Rainfall Intensity Water Logging Index in Beijing’s Historic and Cultural Districts
3.2. Determination the Warning Levels for Building Waterlogging, Road Waterlogging, and Public Evacuation in Beijing’s Historic and Cultural Districts
3.3. Development of Early-Warning Response Measures for Building Waterlogging, Road Waterlogging, and Public Evacuation in Beijing’s Historic and Cultural Districts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Ayala, D.; Wang, K.; Yan, Y.; Smith, H.; Massam, A.; Filipova, V.; Pereira, J.J. Flood Vulnerability and Risk Assessment of Urban Traditional Buildings in a Heritage District of Kuala Lumpur, Malaysia. Nat. Hazards Earth Syst. Sci. 2020, 20, 2221–2241. [Google Scholar] [CrossRef]
- Aribisala, O.D.; Yum, S.-G.; Adhikari, M.D.; Song, M.-S. Flood Damage Assessment: A Review of Microscale Methodologies for Residential Buildings. Sustainability 2022, 14, 13817. [Google Scholar] [CrossRef]
- Arrighi, C.; Rossi, L.; Trasforini, E.; Rudari, R.; Ferraris, L.; Brugioni, M.; Franceschini, S.; Castelli, F. Quantification of Flood Risk Mitigation Benefits: A Building-Scale Damage Assessment through the RASOR Platform. J. Environ. Manag. 2018, 207, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.C.; Singh, S.K.; Nathawat, M.S. Waterlogging and Flood Hazards Vulnerability and Risk Assessment in Indo Gangetic Plain. Nat. Hazards 2010, 55, 273–289. [Google Scholar] [CrossRef]
- Subrina, S.; Chowdhury, F.K. Urban Dynamics: An Undervalued Issue for Water Logging Disaster Risk Management in Case of Dhaka City, Bangladesh. Procedia Eng. 2018, 212, 801–808. [Google Scholar] [CrossRef]
- Samuels, K.L.; Platts, E.J. Global Climate Change and UNESCO World Heritage. Int. J. Cult. Prop. 2022, 29, 409–432. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Non-Structural Flood Protection and Sustainability. Water Int. 2002, 27, 3–13. [Google Scholar] [CrossRef]
- Egusquiza, A.; Lückerath, D.; Zorita, S.; Silverton, S.; Garcia, G.; Servera, E.; Bonazza, A.; García, I.; Kalis, A. Paving the Way for Climate Neutral and Resilient Historic Districts. Open Res. Eur. 2023, 3, 42. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Lu, J.; Li, F.; Wang, Y. Experience and Enlightenment of Urban Waterlogging Disaster Prevention in Foreign Countries. E3S Web Conf. 2022, 352, 03010. [Google Scholar] [CrossRef]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational Early Warning Systems for Water-Related Hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Cerra, D.; Plank, S. Towards Early Warning for Damages to Cultural Heritage Sites: The Case of Palmyra. In Remote Sensing for Archaeology and Cultural Landscapes: Best Practices and Perspectives Across Europe and the Middle East; Hadjimitsis, D.G., Themistocleous, K., Cuca, B., Agapiou, A., Lysandrou, V., Lasaponara, R., Masini, N., Schreier, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 221–239. ISBN 978-3-030-10979-0. [Google Scholar]
- Kittipongvises, S.; Phetrak, A.; Rattanapun, P.; Brundiers, K.; Buizer, J.L.; Melnick, R. AHP-GIS Analysis for Flood Hazard Assessment of the Communities Nearby the World Heritage Site on Ayutthaya Island, Thailand. Int. J. Disaster Risk Reduct. 2020, 48, 101612. [Google Scholar] [CrossRef]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods—A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; She, L.; You, X. Establishment of Urban Waterlogging Pre-Warning System Based on Coupling RBF-NARX Neural Networks. Water Sci. Technol. 2020, 82, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mei, C.; Liu, H.; Fang, X.; Ni, G.; Jin, W. Key Scientific and Technological Issues of Joint Prevention and Control of River Flood and Urban Waterlogging Disaster Chain in Megacities. Adv. Water Sci. 2023, 34, 172–181. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Lin, Y.; Zhang, X.; Zhou, J.; Wei, B.; Nie, G.; Gross, L. Urban Waterlogging Resilience Assessment and Postdisaster Recovery Monitoring Using NPP-VIIRS Nighttime Light Data: A Case Study of the ‘July 20, 2021’ Heavy Rainstorm in Zhengzhou City, China. Int. J. Disaster Risk Reduct. 2023, 90, 103649. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting Future Urban Waterlogging-Prone Areas by Coupling the Maximum Entropy and FLUS Model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Hou, J.; Du, Y. Spatial Simulation of Rainstorm Waterlogging Based on a Water Accumulation Diffusion Algorithm. Geomat. Nat. Hazards Risk 2020, 11, 71–87. [Google Scholar] [CrossRef]
- Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N. Technical Note: An Operational Landslide Early Warning System at Regional Scale Based on Space–Time-Variable Rainfall Thresholds. Nat. Hazards Earth Syst. Sci. 2015, 15, 853–861. [Google Scholar] [CrossRef]
- Alfieri, L.; Zsoter, E.; Harrigan, S.; Aga Hirpa, F.; Lavaysse, C.; Prudhomme, C.; Salamon, P. Range-Dependent Thresholds for Global Flood Early Warning. J. Hydrol. X 2019, 4, 100034. [Google Scholar] [CrossRef] [PubMed]
- Cools, J.; Innocenti, D.; O’Brien, S. Lessons from Flood Early Warning Systems. Environ. Sci. Policy 2016, 58, 117–122. [Google Scholar] [CrossRef]
- Roy, S.; Bose, A.; Singha, N.; Basak, D.; Chowdhury, I.R. Urban Waterlogging Risk as an Undervalued Environmental Challenge: An Integrated MCDA-GIS Based Modeling Approach. Environ. Chall. 2021, 4, 100194. [Google Scholar] [CrossRef]
- Subashini, M.J.; Sudarmani, R.; Gobika, S.; Varshini, R. Development of Smart Flood Monitoring and Early Warning System Using Weather Forecasting Data and Wireless Sensor Networks-A Review. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 132–135. [Google Scholar]
- Sun, R.; Shi, S.; Reheman, Y.; Li, S. Measurement of Urban Flood Resilience Using a Quantitative Model Based on the Correlation of Vulnerability and Resilience. Int. J. Disaster Risk Reduct. 2022, 82, 103344. [Google Scholar] [CrossRef]
- Bulti, D.T.; Girma, B.; Megento, T.L. Community Flood Resilience Assessment Frameworks: A Review. SN Appl. Sci. 2019, 1, 1663. [Google Scholar] [CrossRef]
- Cheng, Y.; Elsayed, E.A.; Huang, Z. Systems Resilience Assessments: A Review, Framework and Metrics. Int. J. Prod. Res. 2022, 60, 595–622. [Google Scholar] [CrossRef]
- Golz, S.; Schinke, R.; Naumann, T. Assessing the Effects of Flood Resilience Technologies on Building Scale. Urban Water J. 2015, 12, 30–43. [Google Scholar] [CrossRef]
- Keating, A.; Campbell, K.; Szoenyi, M.; McQuistan, C.; Nash, D.; Burer, M. Development and Testing of a Community Flood Resilience Measurement Tool. Nat. Hazards Earth Syst. Sci. 2017, 17, 77–101. [Google Scholar] [CrossRef]
- Irwin, S.; Schardong, A.; Simonovic, S.P.; Nirupama, N. ResilSIM—A Decision Support Tool for Estimating Resilience of Urban Systems. Water 2016, 8, 377. [Google Scholar] [CrossRef]
- Chen, Z.; Li, K.; Du, J.; Chen, Y.; Liu, R.; Wang, Y. Three-Dimensional Simulation of Regional Urban Waterlogging Based on High-Precision DEM Model. Nat. Hazards 2021, 108, 2653–2677. [Google Scholar] [CrossRef]
- Chowdhury, M.S. Modelling Hydrological Factors from DEM Using GIS. MethodsX 2023, 10, 102062. [Google Scholar] [CrossRef] [PubMed]
- Cimellaro, G.P.; Renschler, C.; Reinhorn, A.M.; Arendt, L. PEOPLES: A Framework for Evaluating Resilience. J. Struct. Eng. 2016, 142, 04016063. [Google Scholar] [CrossRef]
- Dewulf, A.; Karpouzoglou, T.; Warner, J.; Wesselink, A.; Mao, F.; Vos, J.; Tamas, P.; Groot, A.E.; Heijmans, A.; Ahmed, F.; et al. The Power to Define Resilience in Social–Hydrological Systems: Toward a Power-Sensitive Resilience Framework. WIREs Water 2019, 6, e1377. [Google Scholar] [CrossRef]
- Graveline, M.-H.; Germain, D. Disaster Risk Resilience: Conceptual Evolution, Key Issues, and Opportunities. Int. J. Disaster Risk Sci. 2022, 13, 330–341. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining Urban Resilience: A Review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Zhao, L.; He, F.; Zhao, C. A Framework of Resilience Development for Poor Villages after the Wenchuan Earthquake Based on the Principle of “Build Back Better”. Sustainability 2020, 12, 4979. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Zhang, H. Urban Stormwater Inundation Simulation Based on SWMM and Diffusive Overland-Flow Model. Water Sci. Technol. 2017, 76, 3392–3403. [Google Scholar] [CrossRef] [PubMed]
- Sidek, L.M.; Jaafar, A.S.; Majid, W.H.A.W.A.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-Resolution Hydrological-Hydraulic Modeling of Urban Floods Using InfoWorks ICM. Sustainability 2021, 13, 10259. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Zhang, R.; Li, J.; Wang, W. The Impact of Rainfall Change on Rainwater Source Control in Beijing. Urban Clim. 2021, 37, 100841. [Google Scholar] [CrossRef]
- Creaco, E. Scaling Models of Intensity–Duration–Frequency (IDF) Curves Based on Adjusted Design Event Durations. J. Hydrol. 2024, 632, 130847. [Google Scholar] [CrossRef]
- Mottahedin, A.; Giudicianni, C.; Barbero, G.; Petaccia, G.; Creaco, E. General Method Based on Regressive Relationships to Parameterize the Three-Parameter Depth-Duration-Frequency Curve. Atmosphere 2023, 14, 190. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The K-Means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban Flooding Risk Assessment Based on an Integrated K-Means Cluster Algorithm and Improved Entropy Weight Method in the Region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, Z.; Hong, S.; Song, S. Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City. Math. Probl. Eng. 2017, 2017, e5659197. [Google Scholar] [CrossRef]
- Fan, Y.; Ao, T.; Yu, H.; Huang, G.; Li, X. A Coupled 1D-2D Hydrodynamic Model for Urban Flood Inundation. Adv. Meteorol. 2017, 2017, e2819308. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Parsons, M.; Glavac, S.; Hastings, P.; Marshall, G.; McGregor, J.; McNeill, J.; Morley, P.; Reeve, I.; Stayner, R. Top-down Assessment of Disaster Resilience: A Conceptual Framework Using Coping and Adaptive Capacities. Int. J. Disaster Risk Reduct. 2016, 19, 1–11. [Google Scholar] [CrossRef]
- McClymont, K.; Morrison, D.; Beevers, L.; Carmen, E. Flood Resilience: A Systematic Review. J. Environ. Plan. Manag. 2020, 63, 1151–1176. [Google Scholar] [CrossRef]
- Ostadtaghizadeh, A.; Ardalan, A.; Paton, D.; Jabbari, H.; Khankeh, H.R. Community Disaster Resilience: A Systematic Review on Assessment Models and Tools. PLoS Curr. 2015, 7, ecurrents.dis.f224ef8efbdfcf1d508dd0de4d8210ed. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.B. Urban Conservation and Revalorisation of Dilapidated Historic Quarters: The Case of Nanluoguxiang in Beijing. Cities 2010, 27, S43–S54. [Google Scholar] [CrossRef]
- Cun, C.; Zhang, W.; Che, W.; Sun, H. Review of Urban Drainage and Stormwater Management in Ancient China. Landsc. Urban Plan. 2019, 190, 103600. [Google Scholar] [CrossRef]
- Ding, J.; Cai, J.; Guo, G.; Chen, C. An Emergency Decision-Making Method for Urban Rainstorm Water-Logging: A China Study. Sustainability 2018, 10, 3453. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, H.; Liu, Y.; Lei, X. Urban Waterlogging Structure Risk Assessment and Enhancement. J. Environ. Manag. 2024, 352, 120074. [Google Scholar] [CrossRef] [PubMed]
Index | Cluster Category | Frequency | Percentage% |
---|---|---|---|
1 | Cluster 1 | 42 | 42.0 |
2 | Cluster 2 | 6 | 6.0 |
3 | Cluster 3 | 4 | 4.0 |
4 | Cluster 4 | 11 | 11.0 |
5 | Cluster 5 | 21 | 21.0 |
6 | Cluster 6 | 4 | 4.0 |
7 | Cluster 7 | 8 | 8.0 |
8 | Cluster 8 | 4 | 4.0 |
Total | 100 | 100 |
Cluster Category (Mean Value ± Standard Deviation) | F | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cluster 1 (n = 42) | Cluster 5 (n = 21) | Cluster 4 (n = 11) | Cluster 7 (n = 8) | Cluster 2 (n = 6) | Cluster 6 (n = 4) | Cluster 8 (n = 4) | Cluster 3 (n = 4) | |||
Rainfall Intensity (mm/h) | 32.852 ± 5.530 | 52.400 ± 6.269 | 78.228 ± 8.733 | 109.841 ± 10.828 | 154.425 ± 13.029 | 215.261 ± 12.265 | 0.000 ± 0.000 | 264.909 ± 14.200 | 895.328 | 0.000 |
Waterlogging Depth (m) | 0.306 ± 0.104 | 0.398 ± 0.023 | 0.349 ± 0.169 | 0.272 ± 0.205 | 0.220 ± 0.161 | 0.202 ± 0.055 | 0.298 ± 0.014 | 0.232 ± 0.056 | 3.437 | 0.003 |
Contour Coefficient | DBI | CH |
---|---|---|
0.592 | 0.432 | 895.137 |
Index | Cluster Category | Rainfall Intensity (mm/h) | Waterlogging Depth (m) | Index | Cluster Category | Rainfall Intensity (mm/h) | Waterlogging Depth (m) |
---|---|---|---|---|---|---|---|
1 | Cluster 1 | 40 | 0.39 | 22 | Cluster 1 | 32 | 0.33 |
2 | Cluster 1 | 41 | 0.39 | 23 | Cluster 1 | 24 | 0.33 |
3 | Cluster 1 | 42 | 0.39 | 24 | Cluster 1 | 27 | 0.33 |
4 | Cluster 1 | 36 | 0.38 | 25 | Cluster 1 | 37 | 0.32 |
5 | Cluster 1 | 38 | 0.38 | 26 | Cluster 1 | 31 | 0.32 |
6 | Cluster 1 | 34 | 0.37 | 27 | Cluster 1 | 24 | 0.32 |
7 | Cluster 1 | 39 | 0.37 | 28 | Cluster 1 | 41 | 0.32 |
8 | Cluster 1 | 30 | 0.37 | 29 | Cluster 1 | 28 | 0.32 |
9 | Cluster 1 | 37 | 0.36 | 30 | Cluster 1 | 35 | 0.31 |
10 | Cluster 1 | 33 | 0.36 | 31 | Cluster 1 | 27 | 0.31 |
11 | Cluster 1 | 28 | 0.36 | 32 | Cluster 1 | 24 | 0.31 |
12 | Cluster 1 | 39 | 0.35 | 33 | Cluster 1 | 39 | 0.31 |
13 | Cluster 1 | 33 | 0.35 | 34 | Cluster 1 | 31 | 0.30 |
14 | Cluster 1 | 30 | 0.35 | 35 | Cluster 1 | 23 | 0.30 |
15 | Cluster 1 | 25 | 0.35 | 36 | Cluster 1 | 34 | 0.30 |
16 | Cluster 1 | 37 | 0.35 | 37 | Cluster 1 | 26 | 0.29 |
17 | Cluster 1 | 34 | 0.34 | 38 | Cluster 1 | 30 | 0.29 |
18 | Cluster 1 | 31 | 0.34 | 39 | Cluster 1 | 30 | 0 |
19 | Cluster 1 | 27 | 0.33 | 40 | Cluster 1 | 33 | 0 |
20 | Cluster 1 | 24 | 0.33 | 41 | Cluster 1 | 36 | 0 |
21 | Cluster 1 | 32 | 0.33 | 42 | Cluster 1 | 40 | 0 |
Index | Cluster Category | Rainfall Intensity (mm/h) | Waterlogging Depth (m) | Index | Cluster Category | Rainfall Intensity (mm/h) | Waterlogging Depth (m) |
---|---|---|---|---|---|---|---|
1 | Cluster 5 | 61 | 0.43 | 12 | Cluster 5 | 45 | 0.40 |
2 | Cluster 5 | 63 | 0.43 | 13 | Cluster 5 | 50 | 0.40 |
3 | Cluster 5 | 56 | 0.42 | 14 | Cluster 5 | 47 | 0.39 |
4 | Cluster 5 | 54 | 0.42 | 15 | Cluster 5 | 43 | 0.38 |
5 | Cluster 5 | 52 | 0.42 | 16 | Cluster 5 | 63 | 0.38 |
6 | Cluster 5 | 50 | 0.41 | 17 | Cluster 5 | 48 | 0.37 |
7 | Cluster 5 | 60 | 0.41 | 18 | Cluster 5 | 58 | 0.37 |
8 | Cluster 5 | 54 | 0.41 | 19 | Cluster 5 | 44 | 0.36 |
9 | Cluster 5 | 49 | 0.41 | 20 | Cluster 5 | 52 | 0.36 |
10 | Cluster 5 | 47 | 0.40 | 21 | Cluster 5 | 49 | 0.35 |
11 | Cluster 5 | 44 | 0.40 |
Meteorological Rainstorm Warning Level | Rainfall Intensity in the Next 1 h (mm/h) | 1 h Rainfall Intensity Water Logging Index | Building Water Logging Risk Index | Building Water Logging Warning Levels | Road Water Logging Risk Index | Building Water Logging Warning Levels | Public Evacuation Index | Public Evacuation Warning Levels |
---|---|---|---|---|---|---|---|---|
Blue Alert | 30 | 1 | 1 | Blue | 1 | Blue | 1 | Blue |
2 | Yellow | 2 | Yellow | 2 | Yellow | |||
3 | Orange | 3 | Orange | 3 | Orange | |||
Yellow Alert | 50 | 2 | 1 | Yellow | 1 | Yellow | 1 | Yellow |
2 | Orange | 2 | Orange | 2 | Orange | |||
3 | Red | 3 | Red | 3 | Red | |||
Orange Alert | 70 | 3 | 1 | Orange | 1 | Orange | 1 | Orange |
2 | Red | 2 | Red | 2 | Red | |||
3 | Red | 3 | Red | 3 | Red | |||
Red Alert | 100 | 1 | Orange | 1 | Orange | 1 | Orange | |
2 | Red | 2 | Red | 2 | Red | |||
3 | Red | 3 | Red | 3 | Red |
Alert Objects in the District | Warning Levels | Risk Characteristics | Response Measures | Response Entities | |
---|---|---|---|---|---|
Technical | Nontechnical | ||||
District’s buildings | Blue Alert | Potential water ingress | Prepare flood barriers and sandbags | Inspection and investigation; Information submission | Waterlogging prevention control headquarters of the street where the historic and cultural district is located; Waterlogging prevention control headquarters of cultural heritage units; Various emergency rescue teams; The public in historical and cultural districts |
District’s roads | Potential water accumulation | Water pumping operation; Clear blockage at rainwater outlets | Inspection and investigation; Information submission | ||
District’s residents | Pose risks to occupants of dangerous buildings | Evacuation and relocation of occupants in dangerous buildings and elderly people living alone | Inspection and investigation; Information submission | ||
District’s buildings | Yellow Alert | High risk of water ingress; Potential roof leaks | Install flood barriers, sandbags, and drainage pumps; Use tarpaulin or roofing felt to cover and repair leaking roofs | Inspection and investigation; Information submission; Emergency repair scheduling | |
District’s roads | High risk of water accumulation | Clear away the accumulated water; Install drainage units; | Inspection and investigation; Information submission; Forced drainage scheduling | ||
District’s residents | Threat to elderly and children | Organize the evacuation of elderly and children as needed | Household survey; Shelter preparation; Information submission | ||
District’s buildings | Orange Alert | High risk of water ingress; Potential roof leaks | Start the operation of drainage pumps as needed; Use tarpaulin or roofing felt to cover and repair leaking roofs | Inspection and investigation; Information submission; Emergency repair scheduling | |
District’s roads | High risk of water accumulation | Start the operation of drainage pumps as needed | Inspection and investigation; Information submission; Road closure control; Personnel and vehicle detour; Notify to move vehicles | ||
District’s residents | Significant threat to elderly and children | Organize the evacuation of elderly and children as needed; Evacuate personnel from schools, scenic areas, and organizations within the neighborhood | Inspection and investigation; Information submission; Organize evacuation | ||
District’s buildings | Red Alert | Water ingress occurs; Extensive roof leaks occur | Start the operation of drainage pumps as needed; Use tarpaulin or roofing felt to cover and repair leaking roofs | Inspection and investigation; Information submission; Emergency repair scheduling | |
District’s roads | Water accumulation occurs; Road surface collapse occurs | Start the operation of drainage units; Road repair and barricading | Inspection and investigation; Information submission; Road closure control; Personnel and vehicle detour | ||
District’s residents | Poses a threat to the majority of the public | Public prepares for evacuation; Organize public evacuation as needed; Emergency medical rescue | Inspection and investigation; Information submission; Organize evacuation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, J.; Wang, X.; Xu, L.; Li, Y.; Li, J.; Zhang, Y.; Xie, T. Methods for Constructing a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in Historic and Cultural Districts. Water 2024, 16, 1290. https://doi.org/10.3390/w16091290
Wu J, Li J, Wang X, Xu L, Li Y, Li J, Zhang Y, Xie T. Methods for Constructing a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in Historic and Cultural Districts. Water. 2024; 16(9):1290. https://doi.org/10.3390/w16091290
Chicago/Turabian StyleWu, Jing, Junqi Li, Xiufang Wang, Lei Xu, Yuanqing Li, Jing Li, Yao Zhang, and Tianchen Xie. 2024. "Methods for Constructing a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in Historic and Cultural Districts" Water 16, no. 9: 1290. https://doi.org/10.3390/w16091290
APA StyleWu, J., Li, J., Wang, X., Xu, L., Li, Y., Li, J., Zhang, Y., & Xie, T. (2024). Methods for Constructing a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in Historic and Cultural Districts. Water, 16(9), 1290. https://doi.org/10.3390/w16091290