Mine Wastewater Effect on the Aquatic Diversity and the Ecological Status of the Watercourses in Southern Poland
Abstract
:1. Introduction
WFD Objectives on a Surface Water Body Quality
2. Mine Wastewater Composition and Effect on a Surface Water Body
3. Materials and Methods
3.1. The Studied Area
3.2. Sampling Process
3.3. Water Samples Analysis
3.4. Analysis of Biological Elements
4. Results and Discussion
4.1. Evaluation of the Salinity Effect in the Goławiecki Stream
4.2. Effect of the Goławiecki Stream Flow in the Small Vistula River
4.3. Effect of Other Saline Effluents in the Small Vistula River
4.4. Comparison between the Two Water Quality Analyses in the Study Area
4.5. Biological Water Quality
4.6. Comparison of Diversity and Density of Aquatic Invertebrates in the Water Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gombert, P.; Sracek, O.; Koukouzas, N.; Gzyl, G.; Valladares, S.T.; Frączek, R.; Klinger, C.; Bauerek, A.; Areces, J.E.Á.; Chamberlain, S.; et al. An Overview of Priority Pollutants in Selected Coal Mine Discharges in Europe. Mine Water Environ. 2019, 38, 16–23. [Google Scholar] [CrossRef]
- Gzyl, G.; Janson, E.; Łabaj, P. Mine Water Discharges in Upper Silesian Coal Basin (Poland). In Assessment, Restoration and Reclamation of Mining Influenced Soils; Elsevier: Amsterdam, The Netherlands, 2017; pp. 463–486. [Google Scholar]
- European Industrial Emissions Portal. Available online: https://industry.eea.europa.eu/ (accessed on 13 January 2023).
- Bäthe, J.; Coring, E. Biological effects of anthropogenic salt-load on the aquatic Fauna: A synthesis of 17 years of biological survey on the rivers Werra and Weser. Limnologica 2011, 41, 125–133. [Google Scholar] [CrossRef]
- Braukmann, U.; Böhme, D. Salt pollution of the middle and lower sections of the river Werra (Germany) and its impact on benthic macroinvertebrates. Limnologica 2011, 41, 113–124. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M. A review of recent advances and future challenges in freshwater salinization. Limnetica 2020, 39, 185–211. [Google Scholar] [CrossRef]
- Hintz, W.D.; Relyea, R.A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshw. Biol. 2019, 64, 1081–1097. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Brock, M.A.; Crosslé, K.; Harris, K.; Healey, M.; Jarosinski, I. The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshw. Biol. 2003, 48, 2214–2223. [Google Scholar] [CrossRef]
- Bœuf, G.; Payan, P. How should salinity influence fish growth? Comp. Biochem. Physiol. Part C 2001, 130, 411–423. [Google Scholar] [CrossRef]
- Boets, P.; Lock, K.; Goethals, P.L.M. Assessing the importance of alien macro-Crustacea (Malacostraca) within macroinvertebrate assemblages in Belgian coastal harbours. Helgol. Mar. Res. 2012, 66, 175–187. [Google Scholar] [CrossRef]
- Piscart, C.; Moreteau, J.-C.; Beisel, J.-N. Biodiversity and Structure of Macroinvertebrate Communities Along a Small Permanent Salinity Gradient (Meurthe River, France). Hydrobiologia 2005, 551, 227–236. [Google Scholar] [CrossRef]
- Piscart, C.; Kefford, B.J.; Beisel, J.N. Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area. Limnologica 2011, 41, 107–112. [Google Scholar] [CrossRef]
- Chaktraborty, S.; Karmaker, D.; Rahman, M.A.; Bali, S.C.; Das, S.K.; Hossen, R. Impacts of pH and salinity on community composition, growth and cell morphology of three freshwater phytoplankton. Plant Sci. Today 2021, 8. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Kotronaki, S.G.; Dick, J.T.A.; Briski, E. Salinity tolerance and geographical origin predict global alien amphipod invasions. Biol. Lett. 2020, 16, 20200354. [Google Scholar] [CrossRef]
- Yokomizo, T.; Takahashi, Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci. Rep. 2020, 10, 16049. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Infrastruktury z dnia 13 lipca 2021 r. w sprawie form i sposobu prowadzenia monitoringu jednolitych części wód powierzchniowych i jednolitych części wód podziemnych (Regulation of the Minister of the Infrastructure of 13 July 2021 on forms and methods of monitoring of surface and groundwater bodies). J. Laws Repub. Pol. 2021; 1576.
- Radovenchyk, I.; Trus, I.; Halysh, V.; Krysenko, T.; Chuprinov, E.; Ivanchenko, A. Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing. Ecol. Eng. Environ. Technol. 2021, 22, 1–7. [Google Scholar] [CrossRef]
- Kolarova, N.; Napiórkowski, P. Trace elements in aquatic environment. Origin, distribution, assessment and toxicity effect for the aquatic biota. Ecohydrol. Hydrobiol. 2021, 21, 655–668. [Google Scholar] [CrossRef]
- Lakra, K.C.; Banerjee, T.K.; Lal, B. Coal mine effluent-induced metal bioaccumulation, biochemical, oxidative stress, metallothionein, and histopathological alterations in vital tissues of the catfish, Clarias batrachus. Environ. Sci. Pollut. Res. Int. 2021, 28, 25300–25315. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.A.; McCarthy, B.; Belmer, N.; Price, P. Subsidence from an Underground Coal Mine and Mine Wastewater Discharge Causing Water Pollution and Degradation of Aquatic Ecosystems. Water Air Soil Pollut. 2015, 226. [Google Scholar] [CrossRef]
- Wright, I.A.; Belmer, N.; Davies, P.J. Coal Mine Water Pollution and Ecological Impairment of One of Australia’s Most ‘Protected’ High Conservation-Value Rivers. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Mishra, V.K.; Shukla, R. Aquatic Macrophytes for the Removal of Heavy Metals from Coal Mining Effluent. In Phytoremediation; Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 143–156. [Google Scholar]
- Mishra, V.K.; Upadhyay, A.R.; Pandey, S.K.; Tripathi, B.D. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ. Monit. Assess. 2008, 141, 49–58. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.; Yavaş, İ.; Ünay, A.; Abdel-DAIM, M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Majewski, W. Vistula river, its characteristics and management. Int. J. Hydrol. 2018, 2. [Google Scholar] [CrossRef]
- Wilczek, Z.; Simka, M.; Zarzycka, M. Walory ekoturystyczne fitocenoz leśnych doliny potoku korzeniec w puszczy pszczyńskiej (Ecotourism values of forest phytocenoses of the Korzeniec brook valley in Pszczyna Forest). Acta Geogr. Silesiana 2017, 11, 57–69. [Google Scholar]
- Krawczyk, T.; Czechowicz, D.; Iłowska, J. Determination of Polycyclic Aromatic Hydrocarbons in Waxes by High Performance Liquid Chromatography with Fluorimetric Detection. J. Anal. Chem. 2020, 75, 495–502. [Google Scholar] [CrossRef]
- Bis, B.; Zdanowicz, A.; Zalewski, M. Effects of catchment properties on hydrochemistry, habitat complexity and invertebrate community structure in a lowland river. In Assessing the Ecological Integrity of Running Waters; Springer: Dordrecht, The Netherlands, 2000; pp. 369–387. [Google Scholar]
- Environmental Standards. Available online: https://scclmines.com/env/Linkfile2.htm (accessed on 26 October 2021).
- WHO. Barium in Drinking-water. In Background Document for Development of WHO Guidelines for Drinking-Water Quality. WHO/FWC/WSH/16.48; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Stets, E.G.; Lee, C.J.; Lytle, D.A.; Schock, M.R. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci. Total Environ. 2018, 613–614, 1498–1509. [Google Scholar] [CrossRef]
- Tenkouano, G.T.; Cumming, B.F.; Jamieson, H.E. Geochemical and ecological changes within Moira Lake (Ontario, Canada): A legacy of industrial contamination and remediation. Environ. Pollut. 2019, 247, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Jia, X.; Xia, R.; Lin, J.; Zhang, Y. A field-based method to derive macroinvertebrate benchmark for specific conductivity adapted for small data sets and demonstrated in the Hun-Tai River Basin, Northeast China. Environ. Pollut. 2016, 216, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.M.; Resh, V.H. Biomonitoring and Benthic Macroinvertebrates; Springer: New York, NY, USA, 1993. [Google Scholar]
- Perrett, M.; Sivarajah, B.; Cheney, C.L.; Korosi, J.B.; Kimpe, L.; Blais, J.M.; Smol, J.P. Impacts on aquatic biota from salinization and metalloid contamination by gold mine tailings in sub-Arctic lakes. Environ. Pollut. 2021, 278, 116815. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M. Freshwater salinization syndrome: From emerging global problem to managing risks. Biogeochemistry 2021, 154, 255–292. [Google Scholar] [CrossRef]
- Gray, D.P.; Harding, J.S. Acid Mine Drainage Index (AMDI): A benthic invertebrate biotic index for assessing coal mining impacts in New Zealand streams. N. Z. J. Mar. Freshw. Res. 2012, 46, 335–352. [Google Scholar] [CrossRef]
- Chandler, L.; Harford, A.J.; Hose, G.C.; Humphrey, C.L.; Chariton, A.; Greenfield, P.; Davis, J. Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream. Environ. Pollut. 2021, 284, 117318. [Google Scholar] [CrossRef]
- Olson, J.R.; Hawkins, C.P. Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates. Freshw. Biol. 2017, 62, 779–791. [Google Scholar] [CrossRef]
- Chown, S.L.; Gaston, K.J. Macrophysiology – progress and prospects. Funct. Ecol. 2016, 30, 330–344. [Google Scholar] [CrossRef]
- Echols, B.S.; Currie, R.J.; Cherry, D.S. Preliminary results of laboratory toxicity tests with the mayfly, Isonychia bicolor (Ephemeroptera: Isonychiidae) for development as a standard test organism for evaluating streams in the Appalachian coalfields of Virginia and West Virginia. Environ. Monit. Assess. 2010, 169, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Kefford, B.J.; Hickey, G.L.; Gasith, A.; Ben-David, E.; Dunlop, J.E.; Palmer, C.G.; Allan, K.; Choy, S.C.; Piscart, C. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: Eastern Australia, France, Israel and South Africa. PLoS ONE 2012, 7, e35224. [Google Scholar] [CrossRef] [PubMed]
Status of Surface Water Bodies | |||||
---|---|---|---|---|---|
1. Ecological Status | |||||
Biological Elements | Hydromorphological Elements | Chemical/Physico-chemical Elements | |||
Aquatic Flora Benthic invertebrates Fish Fauna | Hydrological Regime
| River Continuity
| Morphological Conditions
| General
| Specific Pollutants
|
2. Chemical Status | |||||
WFD (200) | Directive 2008/105/EC | Directive 2013/39/EU | |||
Article 16(7) EQS for the priority substances in surface waters Annex V Classification of chemical status. | Annex IX Emission limit values and environmental quality standards. Annex X List of priority substances. | Annex II Replaces Annex X of the WFD | Sets EQS for the substances in surface waters | Annex I Replaces Annex X of the WFD (2000) and Annex II of the Priority Substances Directive (2008) | Adds 12 additional priority substances (45 in total) |
Parameter | G1 | G2 | G3 | W1 | W2 |
---|---|---|---|---|---|
B, mg/L | 6.90 | 5.97 | 5.46 | 0.24 | 0.38 |
Ba, mg/L | 0.08 | 0.06 | 0.06 | 0.35 | 0.33 |
Br−, mg/L | 72.9 | 61.6 | 55.5 | 3.5 | 5 |
Ca2+, mg/L | 916 | 784 | 716 | 95.9 | 113 |
Cd, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 |
Cl−, mg/L | 24,000 | 20,800 | 18,600 | 1190 | 1690 |
Conductivity, mS/cm | 40.1 | 36.6 | 31.9 | 3.03 | 3.96 |
Cu, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 |
F−, mg/L | <10 | <10 | <10 | <1 | <1 |
HCO3−, mg/L | 741 | 644 | 660 | 338.1 | 354.2 |
Hg, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 |
K+, mg/L | 229 | 196 | 178 | 13.8 | 18.2 |
Mg2+, mg/L | 1020 | 867 | 783 | 47.1 | 67.7 |
Mn2+, mg/L | 1.26 | 1.12 | 0.89 | <0.01 | <0.01 |
Mo, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 |
Na+, mg/L | 13,400 | 11,500 | 10,300 | 633 | 909 |
Ni, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 |
NO3−, mg/L | <10 | 10.6 | 13.9 | 11.4 | 10.2 |
P, mg/L | 0.06 | <0.05 | <0.05 | 0.05 | 0.03 |
Pb, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 |
pH | 6.58 | 6.58 | 6.65 | 7.53 | 7.67 |
PO43−, mg/L | <10 | <10 | <10 | <1 | <1 |
Si, mg/L | 4.14 | 3.91 | 4.17 | 4.56 | 4.47 |
SO42−, mg/L | 1440 | 1220 | 1100 | 86.5 | 111 |
Sr, mg/L | 21.34 | 18.39 | 17.06 | 1.98 | 2.40 |
Ti, mg/L | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
TSS, mg/L | 159 | 127 | 135 | 74.2 | 66.0 |
Zn, mg/L | <0.05 | <0.05 | <0.05 | 0.01 | 0.02 |
O2, mg/L | 8.76 | 9.13 | 9.21 | 9.48 | 9.65 |
BOD, mg/L | 0.23 | 0.85 | 1.00 | 2.61 | 1.63 |
Kjeldahl Nitrogen, mg/L | 0.33 | 0.35 | 0.3 | <0.1 | <0.1 |
PAHs, ng/L | <0.36 | <0.36 | <0.36 | <0.36 | <0.36 |
DDT-o,p’, µg/L | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
DDT-p,p’, µg/L | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
Heptachlor, µg/L | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
Phenol index, µg/L | <0.01 | <0.01 | <0.01 | 0.11 | 0.09 |
PAHs—Sum (EPA16), µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Naphthalene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Acenaphthylene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Acenaphthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Fluorene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Phenanthrene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Anthracene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Fluoranthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pyrene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(a)anthracene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Chrysene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(b)fluoranthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(k)fluoranthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(a)pyrene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Indeno(1,2,3-cd)pyrene, μg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Di-benzo(a,h)anthracene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(ghi)perylene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Hexachlorocyclohexane (sum α-,β-, γ-), µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Parameter | G1 | G2 | G3 | W1 | W2 | K |
---|---|---|---|---|---|---|
ASPT | 4.00 | 2.67 | 4.50 | 4.20 | 4.50 | 4.80 |
Log10(sel_EPTD+1) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 |
1-GOLD | 0.01 | 0.00 | 0.04 | 0.35 | 0.93 | 0.35 |
S | 6 | 3 | 2 | 5 | 5 | 17 |
EPT | 1 | 0 | 0 | 1 | 1 | 4 |
H’ | 0.88 | 0.12 | 0.02 | 0.74 | 0.30 | 1.75 |
ICMI | 0.073 | −0.162 | 0.064 | 0.040 | 0.118 | 0.498 |
MMI_PL | 0.073 | 0.000 | 0.064 | 0.040 | 0.118 | 0.498 |
MMI—Quality class | V | V | V | V | V | III |
B, mg/L | 6.67 | 6.25 | 5.73 | 0.83 | 1.01 | 0.07 |
Ba, mg/L | 0.08 | 0.09 | 0.07 | 0.64 | 0.45 | 0.12 |
Br−, mg/L | <10 | 14 | <10 | <10 | <10 | <10 |
Ca2+, mg/L | 717 | 680 | 627 | 191 | 202 | 48 |
Cd, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | <0.01 |
Cl−, mg/L | 20,000 | 18,300 | 16,800 | 3870 | 4070 | 16 |
Conductivity, µS/cm | 36.4 | 31.2 | 29.5 | 6.78 | 7.86 | 0.44 |
Cu, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | <0.01 |
F−, mg/L | <10 | <10 | <10 | <1 | <1 | <1 |
HCO3−, mg/L | 347.7 | 317.2 | 225.7 | 158.6 | 170.8 | 195.2 |
Hg, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | <0.01 |
K+, mg/L | 193 | 178 | 160 | 37 | 40 | <10 |
Mg2+, mg/L | 839 | 763 | 736 | 157 | 169 | <10 |
Mn, mg/L | 0.50 | <0.05 | <0.05 | <0.01 | <0.01 | 0.05 |
Mo, mg/L | 0.35 | 0.32 | 0.31 | 0.07 | 0.07 | 0.01 |
Na+, mg/L | 11,000 | 10,100 | 9260 | 2110 | 2230 | 16 |
Ni, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | 0.01 |
NO3−, mg/L | <10 | 15 | 16 | <10 | <10 | <10 |
P, mg/L | <0.05 | <0.05 | <0.05 | 0.04 | <0.01 | 0.02 |
Pb, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | <0.01 |
pH | 7.08 | 7.20 | 6.98 | 7.07 | 6.52 | 7.13 |
PO43−, mg/L | <10 | <10 | <10 | <1 | <1 | <1 |
Si, mg/L | 3.79 | 1.99 | 1.47 | 1.70 | 2.48 | 6.59 |
SO42−, mg/L | 1290 | 1180 | 1130 | 203 | 238 | 27 |
Sr, mg/L | 19.70 | 17.94 | 16.39 | 4.74 | 4.55 | 0.42 |
Ti, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | <0.01 |
TSS, mg/L | 432 | 204 | 236 | 12 | 56 | 13.5 |
Zn, mg/L | <0.05 | <0.05 | <0.05 | <0.01 | <0.01 | <0.01 |
O2, mg/L | 6.07 | 5.84 | 5.05 | 4.43 | 4.17 | 6.13 |
BOD, mg/L | 1.09 | 0.20 | 2.31 | 2.39 | 2.92 | 1.02 |
DDT-o,p’, µg/L | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
DDT-p,p’, µg/L | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
Heptachlor, µg/L | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
Hexachlorocyclohexane (sum α-, β-, γ-), µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Phenol index, mg/L | <0.01 | <0.01 | <0.01 | <0.02 | <0.02 | <0.01 |
Kjeldahl Nitrogen—general, mg/L | 0.33 | 0.35 | 0.3 | <0.1 | <0.1 | 0.59 |
WWA—Suma (EPA16), µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Naphthalene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Acenaphthylene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Acenaphthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Fluorene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Phenanthrene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Anthracene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Fluoranthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pyrene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(a)anthracene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Chrysene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(b)fluoranthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(k)fluoranthene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(a)pyrene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Indeno (1,2,3-cd, µg/L) pyrene | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Di-benzo (a, h) anthracene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Benzo(ghi)perylene, µg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Taxa | G1 | G2 | G3 | W1 | W2 | K | ||
---|---|---|---|---|---|---|---|---|
Crustacea | Isopoda | Asellus aquaticus | - | - | - | - | - | 56 |
Amphipoda | Gammarus tigrinus | - | 1 | 3 | 1059 | 2242 | - | |
Oligochaeta | - | - | - | 2 | 58 | 39 | ||
Hirudinea | Glossiphonidae | Helobdella stagnalis | - | - | - | - | - | 1 |
Insecta | Plecoptera | Taeniopterygidae | - | - | - | - | - | 1 |
Trichoptera | Hydropsychidae | 2 | - | - | 8 | 1 | 28 | |
Leptoceridae | - | - | - | - | - | 7 | ||
Limnephilidae | - | - | - | - | - | 4 | ||
Ephemeroptera | Baetidae | - | - | - | - | - | 12 | |
Odonata | Calopterygidae | - | - | - | - | - | 4 | |
Aeshnidae | - | - | - | - | - | 1 | ||
Megaloptera | Sialis lutaria | - | - | - | - | - | 7 | |
Coleoptera | Dytiscidae | - | - | - | - | - | 3 | |
Scirtidae | - | - | - | - | 1 | - | ||
Diptera | Chironomidae | 276 | 680 | 1591 | 1 | - | 173 | |
Ceratopogonidae | 1 | 15 | - | - | - | 4 | ||
Simullidae | - | - | - | - | - | 9 | ||
Pedicidae | - | - | - | - | - | 3 | ||
Syrphidae | 270 | 8 | - | - | - | - | ||
Ephydridae | 1 | - | - | - | - | - | ||
Heteroptera | Corixidae | 0 | - | - | 1 | - | - | |
Gastropoda | Planorbidae | Segmentina nitida | - | - | - | - | - | 1 |
Hydrobidae | P. antipodarum | - | - | - | 343 | 119 | - | |
Bithynidae | Bithynia tentaculata | 18 | - | - | - | - | - | |
Physidae | Physella acuta | - | - | - | 1 | - | - | |
Bivalvia | Sphaeriidae | 2 | - | - | - | - | 1 | |
Total benthos density | 570 | 704 | 1594 | 1415 | 2421 | 354 | ||
Number of taxa | 7 | 4 | 2 | 7 | 5 | 18 | ||
Shannon-Wiener index | 0.876 | 0.176 | 0.014 | 0.614 | 0.297 | 1.764 | ||
Pielou index | 0.45 | 0.127 | 0.02 | 0.316 | 0.184 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitko, K.; Dydo, P.; Milewski, A.K.; Bok-Badura, J.; Jakóbik-Kolon, A.; Krawczyk, T.; Cieplok, A.; Krodkiewska, M.; Spyra, A.; Gzyl, G.; et al. Mine Wastewater Effect on the Aquatic Diversity and the Ecological Status of the Watercourses in Southern Poland. Water 2024, 16, 1292. https://doi.org/10.3390/w16091292
Mitko K, Dydo P, Milewski AK, Bok-Badura J, Jakóbik-Kolon A, Krawczyk T, Cieplok A, Krodkiewska M, Spyra A, Gzyl G, et al. Mine Wastewater Effect on the Aquatic Diversity and the Ecological Status of the Watercourses in Southern Poland. Water. 2024; 16(9):1292. https://doi.org/10.3390/w16091292
Chicago/Turabian StyleMitko, Krzysztof, Piotr Dydo, Andrzej K. Milewski, Joanna Bok-Badura, Agata Jakóbik-Kolon, Tomasz Krawczyk, Anna Cieplok, Mariola Krodkiewska, Aneta Spyra, Grzegorz Gzyl, and et al. 2024. "Mine Wastewater Effect on the Aquatic Diversity and the Ecological Status of the Watercourses in Southern Poland" Water 16, no. 9: 1292. https://doi.org/10.3390/w16091292
APA StyleMitko, K., Dydo, P., Milewski, A. K., Bok-Badura, J., Jakóbik-Kolon, A., Krawczyk, T., Cieplok, A., Krodkiewska, M., Spyra, A., Gzyl, G., Skalny, A., Kończak, B., Bałazińska, M., Łabaj, P., Tetłak, A., Kyriazi, M., & Klempetsani, S. (2024). Mine Wastewater Effect on the Aquatic Diversity and the Ecological Status of the Watercourses in Southern Poland. Water, 16(9), 1292. https://doi.org/10.3390/w16091292