Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. WFP Calculations
2.2.1. WFPgreen
2.2.2. WFPblue
2.2.3. WFPgray
3. Results and Discussion
3.1. Agricultural Situation
3.2. Water Consumption
3.3. WFPs
3.3.1. WFP of Major Crops
3.3.2. WFP of Orchard Crops
3.3.3. WFP of Cucurbit Crops
3.3.4. WFP of Endemic Plants
3.3.5. WFP of Medicinal Plants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horton, P.; Long, S.P.; Smith, P.; Banwart, S.A.; Beerling, D.J. Technologies to deliver food and climate security through agriculture. Nat. Plants 2021, 7, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.R.; Gao, W.-J. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front. Neural Circuits 2018, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-Y.; Oki, T. Water pricing reform for sustainable water resources management in China’s agricultural sector. Agric. Water Manag. 2023, 275, 108045. [Google Scholar] [CrossRef]
- Guterres, A. The Sustainable Development Goals Report 2020; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2020; pp. 1–64. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef]
- Sharafi, S.; Ghaleni, M.M. Spatial assessment of drought features over different climates and seasons across Iran. Theor. Appl. Clim. 2022, 147, 941–957. [Google Scholar] [CrossRef]
- FAO. The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture; FAO: Rome, Italy, 2014. [Google Scholar]
- Haris, M.; Hussain, T.; Mohamed, H.I.; Khan, A.; Ansari, M.S.; Tauseef, A.; Khan, A.A.; Akhtar, N. Nanotechnology—A new frontier of nano-farming in agricultural and food production and its development. Sci. Total Environ. 2023, 857, 159639. [Google Scholar] [CrossRef]
- Sharafi, S. Predicting Iran’s future agro-climate variability and coherence using zonation? based PCA. Ital. J. Agrometeorol. 2022, 2, 17–30. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chaudhary, A.; Dhaigude, V.; Abou Fayssal, S.; Kumar, P.; Sharma, A.; Chen, S. 13 Environmental-Friendly Nanoparticles in Agriculture. Adv. Nanotechnol. Smart Agric. 2023, 15, 267. [Google Scholar]
- Mekonen, B.; Moges, M.; Gelagl, D. Innovative irrigation water-saving strategies to improve water and yield productivity of onions. Int. J. Res. Agric. Sci. 2022, 9, 2348–3997. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Integr. Assess. Water Resour. Glob. Chang. North-South Anal. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548, 236–251. [Google Scholar] [CrossRef]
- Caputo, S.; Schoen, V.; Specht, K.; Grard, B.; Blythe, C.; Cohen, N.; Fox-Kämper, R.; Hawes, J.; Newell, J.; Poniży, L. Applying the food-energy-water nexus approach to urban agriculture: From FEW to FEWP (Food-Energy-Water-People). Urban For. Urban Green. 2021, 58, 126934. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S. Projected water consumption in future global agriculture: Scenarios and related impacts. Sci. Total Environ. 2011, 409, 4206–4216. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef]
- Mcdougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.; Pinilla, V.; Serrano, A. Long term drivers of global virtual water trade: A trade gravity approach for 1965–2010. Ecol. Econ. 2019, 156, 318–326. [Google Scholar] [CrossRef]
- Salmoral, G.; Yan, X. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resour. Conserv. Recycl. 2018, 133, 320–330. [Google Scholar] [CrossRef]
- Covarrubias, M. The nexus between water, energy and food in cities: Towards conceptualizing socio-material interconnections. Sustain. Sci. 2019, 14, 277–287. [Google Scholar] [CrossRef]
- Głowacka, K.; Kromdijk, J.; Kucera, K.; Xie, J.; Cavanagh, A.P.; Leonelli, L.; Leakey, A.D.B.; Ort, D.R.; Niyogi, K.K.; Long, S.P. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 2018, 9, 868. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Chapagain, A.K.; Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2012. [Google Scholar]
- Hess, T.; Lennard, A.; Daccache, A. Comparing local and global water scarcity information in determining the water scarcity footprint of potato cultivation in Great Britain. J. Clean. Prod. 2015, 87, 666–674. [Google Scholar] [CrossRef]
- Deng, G.; Ma, Y.; Li, X. Regional water footprint evaluation and trend analysis of China—Based on interregional input–output model. J. Clean. Prod. 2016, 112, 4674–4682. [Google Scholar] [CrossRef]
- Ababaei, B.; Etedali, H.R. Water footprint assessment of main cereals in Iran. Agric. Water Manag. 2017, 179, 401–411. [Google Scholar] [CrossRef]
- Zhuo, L.; Hoekstra, A.Y. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Front. Agric. Sci. Eng. 2017, 4, 185–194. [Google Scholar] [CrossRef]
- Behmanesh, J. Determination and evaluation of blue and green water footprint of dominant tillage crops in Urmia lake watershed. J. Water Soil Conserv. 2016, 23, 337–344. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef]
- Shejbalová, Š.; Černý, J.; Vašák, F.; Kulhánek, M.; Balík, J. Nitrogen efficiency of spring barley in long-term experiment. Plant Soil Environ. 2014, 60, 291–296. [Google Scholar] [CrossRef]
- FAOSTAT, F.A.O. Food and Agriculture Organization of the United Nations; F.A.O.: Rome, Italy, 2019. [Google Scholar]
- Awan, A.B.; Khan, M.; Zubair, M.; Bellos, E. Commercial parabolic trough CSP plants: Research trends and technological advancements. Sol. Energy 2020, 211, 1422–1458. [Google Scholar] [CrossRef]
- Shahnazari, A.; Liu, F.; Andersen, M.N.; Jacobsen, S.-E.; Jensen, C.R. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crop. Res. 2007, 100, 117–124. [Google Scholar] [CrossRef]
- Luedeling, E.; Kunz, A.; Blanke, M.M. Identification of chilling and heat requirements of cherry trees—A statistical approach. Int. J. Biometeorol. 2013, 57, 679–689. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cai, X.; Cline, S.A.; Nakagawa, N. The Role of Rainfed Agriculture in the Future of Global Food Production; International Food Policy Research Institute: Washington, DC, USA, 2002. [Google Scholar]
- FAOSTAT, F.A.O. Food and Agriculture Organization of the United Nations; F.A.O.: Rome, Italy, 2017. [Google Scholar]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater sensitivity to drought accompanies maize yield increase in the U.S. midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef]
- El Bilali, H.; Allahyari, M.S. Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf. Process. Agric. 2018, 5, 456–464. [Google Scholar] [CrossRef]
- Sharafi, S.; Kazemi, A.; Amiri, Z. Estimating energy consumption and GHG emissions in crop production: A machine learning approach. J. Clean. Prod. 2023, 408, 137242. [Google Scholar] [CrossRef]
- Choudhury, A.T.M.A.; Kennedy, I.R. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol. Fertil. Soils 2004, 39, 219–227. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Saha, S.; Das, A.; Babu, S.; Layek, J.; Mishra, V.K.; Singh, R.; Chowdhury, S.; Yadav, D.; Bhutia, T.L. Resource Management for Enhancing Nutrient Use Efficiency in Crops and Cropping Systems of Rainfed Hill Ecosystems of the North-Eastern Region of India. Indian J. Fertil. 2022, 18, 1090–1111. [Google Scholar]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Biswas, A.K. Integrated water resources management: Is it working? Int. J. Water Resour. Dev. 2008, 24, 5–22. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Nazari, B.; Liaghat, A.; Akbari, M.R.; Keshavarz, M. Irrigation water management in Iran: Implications for water use efficiency improvement. Agric. Water Manag. 2018, 208, 7–18. [Google Scholar] [CrossRef]
- Krupnik, T.J.; Timsina, J.; Devkota, K.P.; Tripathi, B.P.; Karki, T.B.; Urfels, A.; Gaihre, Y.K.; Choudhary, D.; Beshir, A.R.; Pandey, V.P. Agronomic, socio-economic, and environmental challenges and opportunities in Nepal’s cereal-based farming systems. Adv. Agron. 2021, 170, 155–287. [Google Scholar]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Zanetti, F.; Monti, A.; Berti, M.T. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crop. Prod. 2013, 50, 580–595. [Google Scholar] [CrossRef]
- Mason, M.; Zeitoun, M.; El Sheikh, R. Conflict and social vulnerability to climate change: Lessons from Gaza. Clim. Dev. 2011, 3, 285–297. [Google Scholar] [CrossRef]
- Mainuddin, M.; Mojid, M.A.; Scobie, M.; Gaydon, D.; Kirby, M.; Janardhanan, S.; Pena-Arancibia, J.; Kumar, S.; Davies, P.; Schmidt, E. The Regional Hydrological Impact of Farm-Scale Water Saving Measures in the Eastern Gangetic Plains; CSIRO: Canberra, Australia, 2021.
- Kukal, M.; Irmak, S. Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions. Agric. Water Manag. 2020, 227, 105840. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Jensen, C.R.; Liu, F. Improving crop production in the arid Mediterranean climate. Field Crop. Res. 2012, 128, 34–47. [Google Scholar] [CrossRef]
- Zhou, L.-Y.; Zhu, Y.; Kan, Z.-R.; Li, F.-M.; Zhang, F. The impact of crop residue return on the food–carbon–water–energy nexus in a rice–wheat rotation system under climate warming. Sci. Total Environ. 2023, 894, 164675. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure Higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop. Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Ness, D.A.; Xing, K. Toward a resource-efficient built environment: A literature review and conceptual model. J. Ind. Ecol. 2017, 21, 572–592. [Google Scholar] [CrossRef]
- Ives, C.; Pan, H.; Edwards, S.W.; Nelms, M.; Covert, H.; Lichtveld, M.Y.; Harville, E.W.; Wickliffe, J.K.; Zijlmans, W.; Hamilton, C.M. Linking complex disease and exposure data—Insights from an environmental and occupational health study. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Mwongera, C.; Shikuku, K.M.; Twyman, J.; Läderach, P.; Ampaire, E.; Van Asten, P.; Twomlow, S.; Winowiecki, L.A. Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agric. Syst. 2017, 151, 192–203. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, W.; Chen, W.; Chen, B. Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Appl. Energy 2020, 265, 114796. [Google Scholar] [CrossRef]
- Gorripati, R.; Thakur, M.; Kolagani, N. Promoting Climate Resilient Sustainable Agriculture Through Participatory System Dynamics with Crop-Water-Income Dynamics. Water Resour. Manag. 2023, 37, 3935–3951. [Google Scholar] [CrossRef]
- Sanga, U. Beyond Adaptation: Exploring Transformative Pathways to Socio-Ecological Resilience in Agricultural Systems in Mali; Michigan State University: East Lansing, MI, USA, 2020. [Google Scholar]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, M.A.; Anane, M.; Euchi, J.; Frikha, A. Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case. Agric. Syst. 2019, 176, 102644. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Cao, X. Water use efficiency and sensitivity assessment for agricultural production system from the water footprint perspective. Sustainability 2020, 12, 9665. [Google Scholar] [CrossRef]
- Deepa, R.; Anandhi, A.; Alhashim, R. Volumetric and impact-oriented water footprint of agricultural crops: A review. Ecol. Indic. 2021, 130, 108093. [Google Scholar] [CrossRef]
- Tahiri, A.Z.; Carmi, G.; Ünlü, M. Promising water management strategies for arid and semiarid environments. In Landscape Architecture-Processes and Practices towards Sustainable Development; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Wang, W.; Straffelini, E.; Pijl, A.; Tarolli, P. Sustainable water resource management in steep-slope agriculture. Geogr. Sustain. 2022, 3, 214–219. [Google Scholar] [CrossRef]
- Forin, S.; Mikosch, N.; Berger, M.; Finkbeiner, M. Organizational water footprint: A methodological guidance. Int. J. Life Cycle Assess. 2020, 25, 403–422. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Li, Y.; Liao, S.; Sun, Y.; Liu, F. Supplemental light and silicon improved strawberry fruit size and sugars concentration under both full and deficit irrigation. Sci. Hortic. 2023, 313, 111912. [Google Scholar] [CrossRef]
- Haque, A.K.E.; Mukhopadhyay, P.; Nepal, M.; Shammin, M.R. Communities, Climate Change Adaptation and Win–Win Solutions. Clim. Change Community Resil. 2022, 445. [Google Scholar] [CrossRef]
- Lima, V.P.; de Lima, R.A.F.; Joner, F.; Siddique, I.; Raes, N.; ter Steege, H. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 2022, 12, 2267. [Google Scholar] [CrossRef]
- Altieri, M.A.; Koohafkan, P. Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities; Third World Network (TWN): George, Malaysia, 2008; Volume 6. [Google Scholar]
- Shi, X.; Zhao, J.; Jia, H.; Zhao, J.; Lu, J.; Zhao, M.; Chu, Q. Seeking sustainable pathway of crop production by optimizing planting structures and management practices from the perspective of water footprint. Sci. Total Environ. 2022, 843, 157091. [Google Scholar] [CrossRef]
- Wineland, S.M.; Bașağaoğlu, H.; Fleming, J.; Friedman, J.; Garza-Diaz, L.; Kellogg, W.; Koch, J.; Lane, B.A.; Mirchi, A.; Nava, L.F.; et al. The environmental flows implementation challenge: Insights and recommendations across water-limited systems. WIREs Water 2021, 9, e1565. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Fulton, J.; Cooley, H. The water footprint of California’s energy system, 1990–2012. Environ. Sci. Technol. 2015, 49, 3314–3321. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable water use in agriculture: A review of worldwide research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Hu, T.; Geng, C.; Liu, J. Optimization of irrigation and nitrogen levels for a trade-off: Yield, quality, water use efficiency and environment effect in a drip-fertigated apple orchard based on TOPSIS method. Sci. Hortic. 2023, 309, 111700. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S.; Hristov, J.; Kyle, P.; Sands, R.; van Zeist, W.-J.; Havlik, P.; Domínguez, I.P.; et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Bazrafshan, O.; Etedali, H.R.; Moshizi, Z.G.N.; Shamili, M. Virtual water trade and water footprint accounting of Saffron production in Iran. Agric. Water Manag. 2019, 213, 368–374. [Google Scholar] [CrossRef]
- Castillo, R.M.; Feng, K.; Sun, L.; Guilhoto, J.; Pfister, S.; Miralles-Wilhelm, F.; Hubacek, K. The land-water nexus of biofuel production in Brazil: Analysis of synergies and trade-offs using a multiregional input-output model. J. Clean. Prod. 2019, 214, 52–61. [Google Scholar] [CrossRef]
Geographical Situation | ||||||
---|---|---|---|---|---|---|
Longitude | Latitude | Elevation (m) | Area (km−2) | Climate | Plain Condition | |
Shazand | 49.25 | 33.57 | 1913 | 984 | Semidry | Forbidden |
Khomein | 50.05 | 33.37 | 1834 | 2126 | Dry | Forbidden |
Saveh | 50.20 | 35.03 | 1108 | 4066 | Very dry | Critical forbidden |
Climatic Situation | ||||||
Tmin (°C) | Tmax (°C) | Tmean (°C) | P (mm w−1) | Srad (Mj m−2 d−1) | ETref (mm w−1) | |
Shazand | 4.71 | 19.4 | 12.08 | 8.24 | 16.05 | 27.99 |
Khomein | 6.5 | 21.6 | 13.7 | 5.17 | 18.87 | 33.51 |
Saveh | 12.69 | 24.03 | 18.03 | 3.55 | 22.76 | 54.95 |
Hydrological Situation | ||||||
WD (mm w−1) | Run Off | R-Coefficient | Aridity index | AD 1 | AARD 2 | |
Shazand | 19.75 | 799.91 | 1.67 | −1 | 0.21 | 2.9 |
Khomein | 28.34 | 310.74 | 1.03 | −1.2 | 0.49 | 8.2 |
Saveh | 51.4 | 143.91 | 0.68 | −1.6 | 26.1 | 61.7 |
Crops | Fertilizer Usage (kg ha−1) | α | Orchard | Fertilizer Usage (kg ha−1) | α | Cucurbit Crops | Fertilizer Usage (kg ha−1) | α |
---|---|---|---|---|---|---|---|---|
Wheat | 345 | 40 | Almond | 70 | 17 | Cucumber | 410 | 52 |
Barley | 339 | 50 | Walnut | 75 | 18 | Melon | 150 | 30 |
Maize | 570 | 40 | Grape | 60 | 18 | Watermelon | 284 | 30 |
Bean | 150 | 21 | Apricot | 60 | 15 | |||
Alfalfa | 125 | 17 | Cherry | 80 | 29 | |||
Canola | 350 | 40 | Peach | 150 | 21 | |||
Potato | 178 | 23 | Pistachio | 100 | 37 | |||
Saffron | 100 | 40 | Pomegranate | 60 | 12 | |||
Apple | 120 | 18 | ||||||
Rose | 0 | 0 |
Semidry | Dry | Very Dry | |||||||
---|---|---|---|---|---|---|---|---|---|
Crop | Harvested Area (ha) | Production (ton) | Yield (kg ha−1) | Harvested Area (ha) | Production (ton) | Yield (kg ha−1) | Harvested Area (ha) | Production (ton) | Yield (kg ha−1) |
Wheat | 7500 | 33,750 | 4500 | 6100 | 24,400 | 4000 | 9800 | 40,180 | 4100 |
Barley | 2000 | 8000 | 4000 | 4200 | 16,380 | 3900 | 6000 | 18,000 | 3000 |
Canola | 50 | 150 | 3000 | 135 | 175.5 | 1300 | 600 | 720 | 1200 |
Bean | 3000 | 7500 | 2500 | 2707 | 6767.5 | 2500 | 200 | 360 | 1800 |
Alfalfa | 4000 | 26,000 | 6500 | 1975 | 15,800 | 8000 | 2600 | 31,200 | 12,000 |
Maize | 230 | 920 | 40,000 | 243 | 10,692 | 44,000 | 3000 | 105,000 | 35,000 |
Potato | 380 | 11,400 | 30,000 | 65 | 2080 | 32,000 | 700 | 21,000 | 30,000 |
Saffron | 55 | 0.22 | 4.6 | 75.66 | 0.34 | 4.5 | 8 | 0.034 | 4.3 |
Almond | 418 | 501.6 | 1200 | 812 | 974 | 1200 | 890 | 12,460 | 1400 |
Walnut | 268 | 482.4 | 1800 | 168 | 302 | 1800 | 596 | 10,782.8 | 1800 |
Grape | 729 | 10,206 | 14,000 | 792 | 11,880 | 15,000 | 319 | 3509 | 11,000 |
Cherry | 89 | 712 | 8000 | 39 | 312 | 8000 | 134.5 | 1171 | 8706 |
Peach | 31 | 341 | 11,000 | 31 | 403 | 13,000 | 105 | 1470 | 14,000 |
Apple | 397 | 5955 | 15,000 | 273 | 6825 | 25,000 | 869 | 1527.5 | 17,500 |
Pistachio | 190 | 380 | 2000 | 135.9 | 407.7 | 3000 | 3419 | 4444.7 | 1300 |
Pomegranate | >5 | >1 | 2420 | >5 | >1 | 2850 | 9802 | 26,955.5 | 2750 |
Apricot | >5 | >1 | 1750 | >5 | >1 | 1610 | 507.5 | 8536.2 | 16,820 |
Rose | >5 | >1 | 150 | >5 | >1 | 300 | 62 | 1240 | 2000 |
Cucumber | 5 | 125 | 25,000 | 24 | 600 | 25,000 | 120 | 3000 | 25,000 |
Melon | >5 | >1 | 12,000 | 13 | 390 | 30,000 | 1700 | 28,900 | 17,000 |
Watermelon | 120 | 4200 | 35,000 | 363 | 12,705 | 35,000 | 250 | 6250 | 25,000 |
Lemon balm | >5 | >1 | 3500 | >5 | >1 | 3500 | >5 | >1 | 3400 |
Thymus | >5 | >1 | 2800 | >5 | >1 | 2800 | >5 | >1 | 2100 |
Safflower | >5 | >1 | 820 | >5 | >1 | 925 | >5 | >1 | 1100 |
Anison | >5 | >1 | 950 | >5 | >1 | 820 | >5 | >1 | 650 |
Echium | >5 | >1 | 450 | >5 | >1 | 450 | >5 | >1 | 450 |
Mentha | >5 | >1 | 4000 | >5 | >1 | 4000 | >5 | >1 | 2563 |
Yarrow | >5 | >1 | 1300 | >5 | >1 | 1300 | >5 | >1 | 1200 |
Marjoram | >5 | >1 | 1800 | >5 | >1 | 1800 | >5 | >1 | 2150 |
Chicory | >5 | >1 | 3400 | >5 | >1 | 3426 | >5 | >1 | 2560 |
Lavandula | >5 | >1 | 450 | >5 | >1 | 450 | >5 | >1 | 500 |
Chamomile | >5 | >1 | 1200 | >5 | >1 | 1200 | >5 | >1 | 1300 |
Peppermint | >5 | >1 | 3100 | >5 | >1 | 3000 | >5 | >1 | 3200 |
Salvia | >5 | >1 | 2500 | >5 | >1 | 2400 | >5 | >1 | 2200 |
Semidry | Dry | Very Dry | |||||||
---|---|---|---|---|---|---|---|---|---|
Crop | ETc | WR | EP | ETc | WR | EP | ETc | WR | EP |
Wheat | 400.8 | 342.1 | 58.7 | 467.7 | 418.4 | 49.3 | 453.6 | 417.5 | 36.2 |
Barley | 330.0 | 271.3 | 58.7 | 426.1 | 376.8 | 49.3 | 414.9 | 378.7 | 36.2 |
Canola | 354.9 | 296.2 | 58.7 | 349.4 | 300.1 | 49.3 | 369.9 | 333.7 | 36.2 |
Bean | 386.3 | 386.3 | 2.3 | 359.6 | 359.6 | 1.3 | 335.2 | 335.2 | 1.0 |
Alfalfa | 680.2 | 621.5 | 58.7 | 820.2 | 780.5 | 39.7 | 953.3 | 917.1 | 36.2 |
Maize | 531.1 | 531.1 | 1.3 | 585.4 | 585.4 | 0.0 | 591.8 | 591.8 | 0.0 |
Potato | 469.9 | 469.9 | 1.0 | 529.6 | 529.6 | 0.0 | 611.0 | 611.0 | 0.0 |
Saffron | 195.5 | 136.8 | 58.7 | 311.1 | 261.8 | 49.3 | 304.8 | 268.7 | 36.2 |
Almond | 650.6 | 624.4 | 36.3 | 684.0 | 670.6 | 34.1 | 833.4 | 809.5 | 31.3 |
Walnut | 642.7 | 616.5 | 30.5 | 652.5 | 639.1 | 25.2 | 789.8 | 765.9 | 23.5 |
Grape | 513.4 | 500.9 | 26.2 | 579.2 | 565.8 | 23.7 | 657.1 | 633.2 | 21.9 |
Cherry | 688.5 | 662.3 | 33.2 | 704.4 | 690.9 | 29.4 | 897.6 | 873.7 | 27.4 |
Peach | 612.3 | 586.1 | 27.4 | 648.9 | 635.5 | 25.7 | 797.1 | 773.2 | 25.8 |
Apple | 653.8 | 627.6 | 27.1 | 655.6 | 642.2 | 26.4 | 887.0 | 863.1 | 26.7 |
Pistachio | 590.2 | 563.9 | 30.4 | 620.6 | 407.7 | 27.9 | 863.8 | 852.5 | 12.6 |
Pomegranate | 490.6 | 546.9 | 18.6 | 526.0 | 601.3 | 14.3 | 656.0 | 644.7 | 10.7 |
Apricot | 489.4 | 648.4 | 25.4 | 559.4 | 681.3 | 23.1 | 753.9 | 730.0 | 22.9 |
Rose | 343.4 | 462.9 | 34.0 | 410.3 | 510.7 | 27.3 | 563.3 | 539.4 | 23.0 |
Cucumber | 685.0 | 685.0 | 2.3 | 713.1 | 706.9 | 6.2 | 877.8 | 866.4 | 17.6 |
Melon | 550.4 | 473.2 | 1.0 | 545.5 | 545.5 | 2.3 | 602.8 | 591.4 | 10.7 |
Watermelon | 607.5 | 607.5 | 2.0 | 578.2 | 578.2 | 7.2 | 627.5 | 616.2 | 15.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharafi, S.; Nahvinia, M.J.; Salehi, F. Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming. Water 2024, 16, 1311. https://doi.org/10.3390/w16091311
Sharafi S, Nahvinia MJ, Salehi F. Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming. Water. 2024; 16(9):1311. https://doi.org/10.3390/w16091311
Chicago/Turabian StyleSharafi, Saeed, Mohammad Javad Nahvinia, and Fatemeh Salehi. 2024. "Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming" Water 16, no. 9: 1311. https://doi.org/10.3390/w16091311
APA StyleSharafi, S., Nahvinia, M. J., & Salehi, F. (2024). Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming. Water, 16(9), 1311. https://doi.org/10.3390/w16091311