Comparing the Efficiency of Particle Swarm and Harmony Search Algorithms in Optimizing the Muskingum–Cunge Model
Abstract
:1. Introduction
1.1. Research Gap and Motivation
- Limited understanding of optimization algorithm performance in data-scarce environments;
- Absence of comprehensive evaluation frameworks for comparing algorithm performance across multiple rivers with varying characteristics;
- Lack of validated guidelines for algorithm selection in arid regions experiencing climate change impacts.
- Development of a novel multi-metric evaluation framework that combines traditional statistical measures with advanced visualization techniques;
- First-time comprehensive assessment of PSO and HS algorithms across eight diverse rivers in an arid region;
- Creation of region-specific optimization guidelines applicable to similar geographical contexts globally.
1.2. Flood Routing Models and the Position of the Muskingum–Cunge Model
1.3. Innovation in Calibration Methods
- Integration of heat map visualization with traditional statistical measures for comprehensive algorithm evaluation;
- Development of region-specific parameter optimization guidelines;
- Validation of optimization techniques in complex terrain with limited data availability.
1.4. Calibration Methods for Hydrological Models
1.5. Application of Optimization Algorithms in Solving Hydrological Problems
2. Materials and Methods
2.1. Study Area
2.2. The Muskingum–Cunge Method
2.3. Particle Swarm Optimization (PSO)
2.4. Harmony Search Algorithm: A Musical Inspiration
2.4.1. Key Advantages of HS
2.4.2. Steps Involved in the HS Algorithm
- Harmony Memory Considering Rate (HMCR): selects a value from the Harmony Memory if a random number is below HMCR.
- Pitch Adjustment Rate (PAR): if activated, slightly adjusts the selected value.
- Random Selection: chooses a random value within bounds if neither HMCR nor PAR is applied.
2.5. Evaluation of Machine Learning Algorithm Performance
- Coefficient of Residual Mass (CRM):
- 2.
- Normalized Root Mean Square Error (NRMSE):
- 3.
- Model efficiency (EF):
- 4.
- Index of Agreement (d):
- −
- Values less than 10%: Excellent
- −
- Values between 10% and 20%: Good
- −
- Values between 20% and 30%: Fair
- −
- Values greater than 30%: Poor
- −
- 1 indicates perfect agreement between simulated and observed data;
- −
- 0 indicates no agreement.
- −
- Positive values indicate the underestimation of crop performance;
- −
- Negative values indicate the overestimation of crop performance.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lama, G.F.C.; Rillo Migliorini Giovannini, M.; Errico, A.; Mirzaei, S.; Padulano, R.; Chirico, G.B.; Preti, F. Hydraulic efficiency of green-blue flood control scenarios for vegetated rivers: 1D and 2D unsteady simulations. Water 2021, 13, 2620. [Google Scholar] [CrossRef]
- Mel, R.A.; Viero, D.P.; Carniello, L.; D’Alpaos, L. Optimal floodgate operation for river flood management: The case study of Padova (Italy). J. Hydrol. Reg. Stud. 2020, 30, 100702. [Google Scholar] [CrossRef]
- Pinter, N.; Heine, R.A. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. J. Hydrol. 2005, 302, 70–91. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Zheng, W. Wavelet analysis of dam injection and discharge in three gorges dam and reservoir with precipitation and river discharge. Water 2022, 14, 567. [Google Scholar] [CrossRef]
- Gaagai, A.; Aouissi, H.A.; Krauklis, A.E.; Burlakovs, J.; Athamena, A.; Zekker, I.; Boudoukha, A.; Benaabidate, L.; Chenchouni, H. Modeling and risk analysis of dam-break flooding in a semi-arid Montane watershed: A case study of the Yabous Dam, Northeastern Algeria. Water 2022, 14, 767. [Google Scholar] [CrossRef]
- Herrera-Granados, O. Theoretical background and application of numerical modeling to surface water resources. In Current Directions in Water Scarcity Research; Elsevier: Amsterdam, The Netherlands, 2022; Volume 7, pp. 319–340. [Google Scholar]
- Zafar, M.B. Analysis of Channel and Floodplain Hydrodynamics and Flooding on the Mississippi River; Michigan State University: East Lansing, MI, USA, 2023. [Google Scholar]
- Grimaldi, S.; Schumann, G.P.; Shokri, A.; Walker, J.; Pauwels, V. Challenges, opportunities, and pitfalls for global coupled hydrologic-hydraulic modeling of floods. Water Resour. Res. 2019, 55, 5277–5300. [Google Scholar] [CrossRef]
- Jain, S.K.; Mani, P.; Jain, S.K.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief review of flood forecasting techniques and their applications. Int. J. River Basin Manag. 2018, 16, 329–344. [Google Scholar] [CrossRef]
- Roohi, M.; Soleymani, K.; Salimi, M.; Heidari, M. Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint–Venant equation. Model. Earth Syst. Environ. 2020, 6, 645–658. [Google Scholar] [CrossRef]
- Tsai, C.W. Applicability of kinematic, noninertia, and quasi-steady dynamic wave models to unsteady flow routing. J. Hydraul. Eng. 2003, 129, 613–627. [Google Scholar] [CrossRef]
- Ehteram, M.; Shabanian, H. Unveiling the SALSTM-M5T model and its python implementation for precise solar radiation prediction. Energy Rep. 2023, 10, 3402–3417. [Google Scholar] [CrossRef]
- Moradi, E.; Yaghoubi, B.; Shabanlou, S. A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm. Appl. Water Sci. 2023, 13, 49. [Google Scholar] [CrossRef]
- Akbari, R.; Hessami-Kermani, M.-R.; Shojaee, S. Flood routing: Improving outflow using a new non-linear Muskingum model with four variable parameters coupled with PSO-GA algorithm. Water Resour. Manag. 2020, 34, 3291–3316. [Google Scholar] [CrossRef]
- Rahman, M.; Chen, N.; Elbeltagi, A.; Islam, M.M.; Alam, M.; Pourghasemi, H.R.; Tao, W.; Zhang, J.; Shufeng, T.; Faiz, H.; et al. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh. J. Environ. Manag. 2021, 295, 113086. [Google Scholar] [CrossRef] [PubMed]
- Bozorg-Haddad, O.; Abdi-Dehkordi, M.; Hamedi, F.; Pazoki, M.; Loáiciga, H.A. Generalized storage equations for flood routing with nonlinear Muskingum models. Water Resour. Manag. 2019, 33, 2677–2691. [Google Scholar]
- Bozorg-Haddad, O.; Mohammad-Azari, S.; Hamedi, F.; Pazoki, M.; Loáiciga, H.A. Application of a new hybrid non-linear Muskingum model to flood routing. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2020; pp. 109–120. [Google Scholar]
- Das, A. Parameter estimation for Muskingum models. J. Irrig. Drain. Eng. 2004, 130, 140–147. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Van Phong, T.; Trinh, P.T.; Shirzadi, A.; Renoud, S.; Asadi, S.; Van Le, H.; von Meding, J.; Clague, J.J. Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? J. Hydrol. 2021, 592, 125615. [Google Scholar] [CrossRef]
- Karahan, H.; Gurarslan, G.; Geem, Z.W. A new nonlinear Muskingum flood routing model incorporating lateral flow. Eng. Optim. 2015, 47, 737–749. [Google Scholar] [CrossRef]
- Norouzi, H.; Bazargan, J. Using the linear muskingum method and the particle swarm optimization (PSO) algorithm for calculating the depth of the rivers flood. Iran-Water Resour. Res. 2019, 15, 344–347. [Google Scholar]
- Piri, J.; Kahkha, M.R.R.; Kisi, O. Hybrid machine learning approach integrating GMDH and SVR for heavy metal concentration prediction in dust samples. Environ. Sci. Pollut. Res. 2024, 1–20. [Google Scholar] [CrossRef]
- Piri, J.; Kisi, O. Hybrid nonlinear probabilistic model using Monte Carlo simulation and hybrid support vector regression for evaporation predictions. Hydrol. Sci. J. 2024, 1–29. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. New nonlinear variable-parameter Muskingum models. KSCE J. Civ. Eng. 2017, 21, 2958–2967. [Google Scholar]
- Gąsiorowski, D.; Szymkiewicz, R. Identification of parameters influencing the accuracy of the solution of the nonlinear Muskingum equation. Water Resour. Manag. 2020, 34, 3147–3164. [Google Scholar] [CrossRef]
- Soltani, S.R.K.; Mostafaeipour, A.; Almutairi, K.; Dehshiri, S.J.H.; Dehshiri, S.S.H.; Techato, K. Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study. Sustain. Energy Technol. Assess. 2022, 50, 101849. [Google Scholar]
- Piri, J.; Abdolahipour, M.; Keshtegar, B. Advanced machine learning model for prediction of drought indices using hybrid SVR-RSM. Water Resour. Manag. 2023, 37, 683–712. [Google Scholar] [CrossRef]
- Prawira, D.; Soeryantono, H.; Anggraheni, E.; Sutjiningsih, D. Efficiency analysis of Muskingum-Cunge method and kinematic wave method on the stream routing (Study case: Upper Ciliwung watershed, Indonesia). Proc. IOP Conf. Ser. Mater. Sci. Eng. 2019, 669, 012036. [Google Scholar] [CrossRef]
- Ehteram, M.; Binti Othman, F.; Mundher Yaseen, Z.; Abdulmohsin Afan, H.; Falah Allawi, M.; Bt. Abdul Malek, M.; Najah Ahmed, A.; Shahid, S.; Singh, V.P.; El-Shafie, A. Improving the Muskingum flood routing method using a hybrid of particle swarm optimization and bat algorithm. Water 2018, 10, 807. [Google Scholar] [CrossRef]
- Piri, J.; Mollaeinia, M.; Mostafaie, A. Assessment of response surface method and hybrid models to predict evaporation (case study: Chahnimeh and Pishein reservoirs in Sistan and Baluchestan Province of Iran). Arab. J. Geosci. 2023, 16, 346. [Google Scholar] [CrossRef]
- Barry, D.; Bajracharya, K. On the Muskingum-Cunge flood routing method. Environ. Int. 1995, 21, 485–490. [Google Scholar] [CrossRef]
- Te Chow, V. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Moussa, R.; Bocquillon, C. On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain. J. Hydrol. 2009, 374, 116–135. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Montalvo, I.; Izquierdo, J.; Pérez, R.; Iglesias, P.L. A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Eng. Optim. 2008, 40, 655–668. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Jabari, F.; Mohammadnejad, J.; Yavari, K. Human primary dental pulp mesenchymal stem cells: History and isolation methods. J. Dent. Med. 2014, 27, 184–189. [Google Scholar]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Jahantigh, N.; Piri, J. Estimation of solar radiation in different climates of Iran using hybrid machine learning methods. J. Appl. Comput. Sci. Mech. 2023, 35, 37–53. [Google Scholar]
- Lees, T. Deep Learning for Hydrological Modelling: From Benchmarking to Concept Formation; University of Oxford: Oxford, UK, 2022. [Google Scholar]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe efficiency index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
No. | River Name | Length (m) | Perimeter (km) | Area (km²) | City |
---|---|---|---|---|---|
1 | Rapch | 23,000 | 897.1 | 7944 | Konarak |
2 | Kajou | 34,500 | 838 | 6717 | Qasr-e Qand |
3 | Bahu | 9860 | 189.4 | 987 | Chabahar |
4 | Nikshahr | 18,500 | 142.3 | 373.4 | Nikshahr |
5 | Kehir | 20,546 | 354.2 | 3004 | Nikshahr |
6 | Sarbaz | 56,000 | 764.3 | 6850 | Sarbaz |
7 | Kamb | 21,300 | 208 | 130 | Chabahar |
8 | Siah Jangal | 24,756 | 254.2 | 1350 | Mirjaveh |
Parameter | Value |
---|---|
Population size | 50 particles |
Maximum iterations | 1000 |
Inertia weight (ω) | 0.9 to 0.4 (linearly decreased) |
Cognitive coefficient (c1) | 2 |
Social coefficient (c2) | 2 |
Velocity clamping | Vmax = 20% of search space range |
Stopping criteria | Max iterations or no improvement for 50 iterations |
Initial population generation | Uniform random distribution within parameter bounds |
Constraint handling | Box constraints |
Objective function | MSE |
Number of independent runs | 30 |
Parameter | Value |
---|---|
Harmony Memory Size (HMS) | 30 |
Maximum improvisations | 1000 |
Harmony Memory Considering Rate (HMCR) | 0.9 |
Pitch Adjusting Rate (PAR) | 0.4–0.9 |
Stopping criteria | Max improvisations or no improvement for 50 improvisations |
Initial harmony memory generation | Uniform random distribution within parameter bounds |
Constraint handling | Box constraints |
Objective function | MSE |
Number of independent runs | 30 |
No. | River Name | PSO | HS | ||
---|---|---|---|---|---|
x | K | x | K | ||
1 | Kajou | 0.41 | 24.80 | 0.35 | 21.40 |
2 | Bahu | 0.16 | 15.91 | 0.17 | 16.02 |
3 | Nikshahr | 0.24 | 8.42 | 0.25 | 8.56 |
4 | Rapch | 0.29 | 24.40 | 0.24 | 25.12 |
5 | Sarbaz | 0.23 | 8.60 | 0.25 | 8.74 |
6 | Siah Jangal | 0.42 | 6.40 | 0.43 | 6.21 |
7 | Kehir | 0.24 | 29.11 | 0.23 | 28.60 |
8 | Kamb | 0.18 | 2.90 | 0.19 | 2.85 |
Station | PSO | HS | |
---|---|---|---|
Kajo | CRM | 0.02 | 0.01 |
Ef | 0.92 | 0.92 | |
d | 0.98 | 0.98 | |
NRMSE | 0.10 | 0.10 | |
Bahu | CRM | −0.04 | −0.12 |
Ef | −1.97 | −3.82 | |
d | 0.73 | 0.64 | |
NRMSE | 0.17 | 0.22 | |
NikShahr | CRM | −0.03 | −0.09 |
Ef | 0.39 | 0.03 | |
d | 0.89 | 0.85 | |
NRMSE | 0.14 | 0.17 | |
Rapch | CRM | −0.03 | −0.06 |
Ef | 0.43 | 0.32 | |
d | 0.90 | 0.88 | |
NRMSE | 0.15 | 0.16 | |
Sarbaz | CRM | 0.00 | −0.03 |
Ef | 0.35 | 0.25 | |
d | 0.89 | 0.88 | |
NRMSE | 0.14 | 0.15 | |
Siah Jangal | CRM | −0.01 | −0.02 |
Ef | 0.94 | 0.94 | |
d | 0.99 | 0.99 | |
NRMSE | 0.08 | 0.09 | |
Kahir | CRM | −0.01 | −0.02 |
Ef | 0.64 | 0.61 | |
d | 0.93 | 0.93 | |
NRMSE | 0.12 | 0.13 | |
Kamb | CRM | −0.13 | −0.41 |
Ef | −2.69 | −14.10 | |
d | 0.67 | 0.42 | |
NRMSE | 0.24 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, R.; Piri, J.; Galavi, H.; Keikha, M. Comparing the Efficiency of Particle Swarm and Harmony Search Algorithms in Optimizing the Muskingum–Cunge Model. Water 2025, 17, 104. https://doi.org/10.3390/w17010104
Ahmadi R, Piri J, Galavi H, Keikha M. Comparing the Efficiency of Particle Swarm and Harmony Search Algorithms in Optimizing the Muskingum–Cunge Model. Water. 2025; 17(1):104. https://doi.org/10.3390/w17010104
Chicago/Turabian StyleAhmadi, Rahleh, Jamshid Piri, Hadi Galavi, and Mahdi Keikha. 2025. "Comparing the Efficiency of Particle Swarm and Harmony Search Algorithms in Optimizing the Muskingum–Cunge Model" Water 17, no. 1: 104. https://doi.org/10.3390/w17010104
APA StyleAhmadi, R., Piri, J., Galavi, H., & Keikha, M. (2025). Comparing the Efficiency of Particle Swarm and Harmony Search Algorithms in Optimizing the Muskingum–Cunge Model. Water, 17(1), 104. https://doi.org/10.3390/w17010104