Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics
Abstract
:1. Introduction
2. Location, Geology, and Hydrogeology
3. Methodology and Data
4. Results
4.1. Groundwater Recharge
4.2. Hydraulic Transmissivities
4.3. Water Quality
4.4. Inter-Basin Groundwater Flow
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, R.C.; Parker, A. Climate Change, Population Trends and Groundwater in Africa Climate Change, Population Trends and Groundwater in Africa. Hydrol. Sci. J. 2009, 54, 676–689. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Perez, N.D. Water Resources Development in Africa: A Review and Synthesis of Issues, Potentials, and Strategies for the Future; International Food Policy Research Institute: Washington, DC, USA, 1997. [Google Scholar]
- Gaye, C.B.; Tindimugaya, C. Review: Challenges and Opportunities for Sustainable Groundwater Management in Africa. Hydrogeol. J. 2019, 27, 1099–1110. [Google Scholar] [CrossRef]
- Macdonald, A.M.; Davies, J. A Brief Review of Groundwater for Rural Water Supply in Sub-Saharan; Technical Report WC/00/33 for Overseas Geology Series; BGS International: Nottingham, UK, 2000. [Google Scholar]
- Lapworth, D.J.; Nkhuwa, D.C.W.; Pedley, S.; Stuart, M.E. Urban Groundwater Quality in Sub-Saharan Africa: Current Status and Implications for Water Security and Public Health. Hydrogeol. J. 2017, 25, 1093–1116. [Google Scholar] [CrossRef] [PubMed]
- Tessema, A.; Nzotta, U.; Chirenje, E. Assessment of Groundwater Potential in Fractured Hard Rocks around Vryburg, North West Province, South Africa; Report; Water Research Commission: Pretoria, South Africa, 2014. [Google Scholar]
- Kebede, S. Groundwater in Ethiopia: Features, Numbers and Opportunities; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9783642303913. [Google Scholar]
- Taylor, R.G.; Koussis, A.D.; Tindimugaya, C. Groundwater and Climate in Africa—A Review. Hydrol. Sci. J. 2009, 54, 655–664. [Google Scholar] [CrossRef]
- Srinivasa Rao, Y.; Jugran, D.K. Delineation of Groundwater Potential Zones and Zones of Groundwater Quality Suitable for Domestic Purposes Using Remote Sensing and GIS. Hydrol. Sci. J. 2003, 48, 821–833. [Google Scholar] [CrossRef]
- Abbate, E.; Bruni, P.; Peter, M.; Delmer, C.; Ada, M.; Hagos, M.; Bedri, O.; Rook, L.; Sagri, M.; Libsekal, Y. The East Africa Oligocene Intertrappean Beds: Regional Distribution, Depositional Environments and Afro/Arabian Mammal Dispersals. J. Afr. Earth Sci. 2014, 99, 463–489. [Google Scholar] [CrossRef]
- Prave, A.R.; Bates, C.R.; Donaldson, C.H.; Toland, H.; Condon, D.J.; Mark, D.; Raub, T.D. Geology and Geochronology of the Tana Basin, Ethiopia: LIP Volcanism, Super Eruptions and Eocene–Oligocene Environmental Change. Earth Planet. Sci. Lett. 2016, 443, 1–8. [Google Scholar] [CrossRef]
- Pik, R.; Marty, B.; Carignan, J.; Lavé, J. Stability of the Upper Nile Drainage Network (Ethiopia) Deduced from (U-Th)/He Thermochronometry: Implications for Uplift and Erosion of the Afar Plume Dome. Earth Planet. Sci. Lett. 2003, 215, 73–88. [Google Scholar] [CrossRef]
- Chorowicz, J.; Collet, B.; Bonavia, F.F.; Mohr, P.; Parrot, J.F.; Korme, T. The Tana Basin, Ethiopia: Intra-Plateau Uplift, Rifting and Subsidence. Tectonophysics 1998, 295, 351–367. [Google Scholar] [CrossRef]
- Zanettin, B. Evolution of the Ethiopian Volcanic Province. Accad. Naz. Lincei 1992, 1, 155–181. [Google Scholar]
- Mohr, P.A. Ethiopian Rift and Plateaus: Some Volcanic Petrochemical Differences. J. Geophys. Res. 1971, 76, 1967–1984. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Balia, R.; Oggiano, G.; Pittalis, D. Prospecting for Safe (Low Fluoride) Groundwater in the Eastern African Rift: The Arumeru District (Northern Tanzania). Hydrol. Earth Syst. Sci. 2010, 14, 1081–1091. [Google Scholar] [CrossRef]
- Wilkinson, P.; Downie, C.; Cattermole, P.J.; Mitchell, J.G. Arusha, Geological Survey of Tanzania; Quarter Degree Sheet 55; Royal Museum for Central Africa: Tervuren, Belgium, 1983. [Google Scholar]
- Bennett, G.; Van Reybrouck, J.; Shemsanga, C.; Kisaka, M.; Tomašek, I.; Fontijn, K.; Kervyn, M.; Walraevens, K. Hydrochemical Characterisation of High-Fluoride Groundwater and Development of a Conceptual Groundwater Flow Model Using a Combined Hydrogeological and Hydrochemical Approach on an Active Volcano: Mount Meru, Northern Tanzania. Water 2021, 13, 2159. [Google Scholar] [CrossRef]
- Pik, R.; Deniel, C.; Coulon, C.; Yirgu, G.; Hofmann, C.; Ayalew, D. The Northwestern Ethiopian Plateau Flood Basalts: Classification and Spatial Distribution of Magma Types. J. Volcanol. Geotherm. Res. 1998, 81, 91–111. [Google Scholar] [CrossRef]
- Belay, A.S.; Yenehun, A.; Nigate, F.; Nigussie, W.; Tilahun, S.A.; Dessie, M.; Moges, M.M.; Chen, M.; Adgo, E.; Fentie, D.; et al. Investigation of Interbasin Groundwater Flow Using Multiple Approaches: The Case of the Tana and Beles Basins, Ethiopia. Hydrogeol. J. 2023, 31, 2251–2270. [Google Scholar] [CrossRef]
- Abbate, E.; Bruni, P.; Sagri, M. Geology of Ethiopia: A Review and Geomorphological Perspectives. In Landscapes and Landforms of Ethiopia; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9789401780261. [Google Scholar]
- Bennett, G.; Van Camp, M.; Shemsanga, C.; Kervyn, M.; Walraevens, K. Delineation of the Aquifer Structure and Estimation of Hydraulic Properties on the Flanks of Mount Meru, Northern Tanzania. J. Afr. Earth Sci. 2022, 196, 104673. [Google Scholar] [CrossRef]
- Ayenew, T.; Demlie, M.; Wohnlich, S. Hydrogeological Framework and Occurrence of Groundwater in the Ethiopian Aquifers. J. Afr. Earth Sci. 2008, 52, 97–113. [Google Scholar] [CrossRef]
- Alemu, T.; Abdelsalam, M.G.; Dawit, E.L.; Atnafu, B.; Mickus, K.L. The Paleozoic and Mesozoic Mekele Sedimentary Basin in Ethiopia: An Example of an Exhumed IntraCONtinental Sag (ICONS) Basin. J. Afr. Earth Sci. 2018, 143, 40–58. [Google Scholar] [CrossRef]
- Küster, D.; Dwivedi, S.B.; Kabeto, K.; Mehari, K.; Matheis, G. Petrogenetic Reconnaissance Investigation of Mafic Sills Associated with Flood Basalts, Mekelle Basin, Northern Ethiopia: Implications for Ni–Cu Exploration. J. Geochem. Explor. 2005, 85, 63–79. [Google Scholar] [CrossRef]
- Bosellini, A.; Russo, A.; Fantozzi, P.L.; Getaneh, A.; Tadesse, S. The Mesozoic Succession of the Mekele Outlier (Tigre Province, Ethiopia). Mem. DELLA Soc. Ital. 1997, 49, 95–116. [Google Scholar]
- TAHAL. Mekelle Water Supply Development Project Groundwater Assessment for Additional Well Fields; Technical Report; TAHAL: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Kahsay, H. Groundwater Recharge Estimation, Source and Flow System Identification Using Stable Isotope Hydrogeochemistry and Hydrogeochemical Modeling, Case of Mekelle Area, Tigray, Northern Ethiopia. Ph.D. Thesis, Mekelle University, Mekelle, Ethiopia, 2023. [Google Scholar]
- Alfarrah, N.; Berhane, G.; Bakundukize, C.; Walraevens, K. Degradation of Groundwater Quality in Coastal Aquifer of Sabratah. Environ. Earth Sci. 2017, 76, 664. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Wada, Y. Non-Renewable Groundwater Use and Groundwater Depletion: A Review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using Groundwater Levels to Estimate Recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Somaratne, N.; Smettem, K.R.J. Theory of the Generalized Chloride Mass Balance Method for Recharge Estimation in Groundwater Basins Characterised by Point and Diffuse Recharge. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 307–332. [Google Scholar] [CrossRef]
- Bakundukize, C.; Van Camp, M.; Walraevens, K. Estimation of Groundwater Recharge in Bugesera Region (Burundi) Using Soil Moisture Budget Approach. Geol. Belg. 2011, 14, 85–102. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated Base Flow Separation and Recession Analysis Techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Batelaan, O.; De Smedt, F. GIS-Based Recharge Estimation by Coupling Surface–Subsurface Water Balances. J. Hydrol. 2007, 337, 337–355. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Global Analysis of Approaches for Deriving Total Water Storage Changes from GRACE Satellites. Water Resour. Res. 2015, 54, 2574–2594. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef]
- Bouwer, H.; Rice, R.C. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resour. Res. 1976, 12, 423–428. [Google Scholar] [CrossRef]
- Papadopulos, I.S.; Cooper, H.H. Drawdown in a Well of Large Diameter. WATER Resour. Res. 1967, 3, 241–244. [Google Scholar] [CrossRef]
- Moench, A.F. Flow to a Well of Finite Diameter in a Homogeneous, Anisotropic Water Table Aquifer. Water Resour. Res. 1997, 33, 1397–1407. [Google Scholar] [CrossRef]
- Theis, C.V. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Neuman, S.P. Effect of Partial Penetration on Flow in Unconfined Aquifers Considering Delayed Gravity Response. Water Resour. Res. 1974, 10, 303–312. [Google Scholar] [CrossRef]
- Hantush, M.S.; Jacob, C. Non-Steady Radial Flow in an Infinite Leaky Aquifer. Eos Trans. Am. Geophys. Union 1955, 36, 95–100. [Google Scholar]
- Bourdet, D.; Ayoub, J.A.; Pirard, Y.M. Use of Pressure Derivative in Well-Test Interpretation. SPE Form. Eval. 1989, 4, 293–302. [Google Scholar] [CrossRef]
- Razack, M.; Huntley, D. Assessing Transmissivity from Specific Capacity in a Large and Heterogeneous Alluvial Aquifer. Groundwater 1991, 29, 856–861. [Google Scholar] [CrossRef]
- Nigate, F.; Yenehun, A.; Belay, A.S.; Van Camp, M.; Walraevens, K. Hydrogeochemical Processes and Groundwater Evolution in Complex Volcanic Highlands and Alluvio-Lacustrine Deposits (Upper Blue Nile), Ethiopia. Environ. Sci. Pollut. Res. 2023, 30, 63953–63974. [Google Scholar] [CrossRef]
- Bennett, G.; Van Reybrouck, J.; Shemsanga, C.; Kisaka, M.; Tomašek, I.; Fontijn, K.; Kervyn, M.; Walraevens, K. Identification of Low Fluoride Areas Using Conceptual Groundwater Flow Model and Hydrogeochemical System Analysis in the Aquifer System on the Flanks of an Active Volcano: Mount Meru, Northern Tanzania. Sci. Total Environ. 2022, 814, 152682. [Google Scholar] [CrossRef]
- Yenehun, A.; Dessie, M.; Nigate, F.; Belay, A.S.; Azeze, M.; Van Camp, M.; Taye, D.F.; Kidane, D.; Adgo, E.; Nyssen, J.; et al. Spatial and Temporal Simulation of Groundwater Recharge and Cross-Validation with Point Estimations in Volcanic Aquifers with Variable Topography. J. Hydrol. Reg. Stud. 2022, 42, 101142. [Google Scholar] [CrossRef]
- Gonçalvès, J.; Séraphin, P.; Stieglitz, T.; Chekireb, A.; Hamelin, B.; Deschamps, P. Coastal Aquifer Recharge and Groundwater–Seawater Exchanges Using Downscaled GRACE Data: Case Study Of the Djeffara Plain (Libya–Tunisia). C. R. Géosci. 2021, 353, 297–318. [Google Scholar] [CrossRef]
- Nigate, F.; Van Camp, M.; Kebede, S.; Walraevens, K. Hydrologic Interconnection Between the Volcanic Aquifer and Springs, Lake Tana Basin on the Upper Blue Nile. J. Afr. Earth Sci. 2016, 121, 154–167. [Google Scholar] [CrossRef]
- WWDSE. Evaluation of Aynalem Well Field and Selection of Additional Prospective Boreholes for Mekelle Town Water Supply Source. In Volume II: Evaluation of Groundwater Potential; Study Report; WWDSE: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Kruseman, G.P.; Floegel, H. Hydrogeology of the Jifarah Plain, NW-Libya. In The Geology of Libya; Salem, M., Pusrewil, M., Eds.; Al Fateh University: Tripoli, Libya, 1978; pp. 763–777. [Google Scholar]
- Pallas, P. Water Resources of the Socialist People’s Libyan Arab Jamahiriya. In The Geology of Libya, Proceedings of the Second Symposium on the Geology of Libya, Tripoli, Libya, 16–21 September 1978; Academic Press: Tripoli, Libya, 1980; pp. 539–593. [Google Scholar]
- Stuyfzand, P. A New Hydrochemical Classification of Water Types: Principles and Application to the Coastal Dunes Aquifer System of the Netherlands. In Proceedings of the 9th Salt Water Intrusion Meeting, Delft, The Netherlands, 12–16 May 1986; pp. 12–16. [Google Scholar]
- Yenehun, A.; Nigate, F.; Belay, A.S.; Desta, M.T.; Van Camp, M.; Walraevens, K. Groundwater Recharge and Water Table Response to Changing Conditions for Aquifers at Different Physiography: The Case of a Semi-Humid River Catchment, Northwestern Highlands of Ethiopia. Sci. Total Environ. 2020, 748, 142243. [Google Scholar] [CrossRef] [PubMed]
- Markovich, K.H.; Manning, A.H.; Condon, L.E. Mountain-Block Recharge: A Review of Current Understanding. Water Resour. Res. 2019, 55, 8278–8304. [Google Scholar] [CrossRef]
- Offodile, M.E. The Occurrence and Exploitation of Groundwater in Nigeria Basement Rocks. J. Min. Geol. 1983, 2, 131–146. [Google Scholar]
- Kwami, I.A.; Ishaku, J.M.; Mukkafa, S.; Haruna, A.I.; Ankidawa, B.A. Delineation of Aquifer Potential Zones Using Hydraulic Parameters in Gombe and Environs, North-Eastern, Nigeria. Heliyon 2019, 5, e01927. [Google Scholar] [CrossRef]
- Jalludin, M.; Razack, M. Assessment of Hydraulic Properties of Sedimentary and Volcanic Aquifer Systems under Arid Conditions in the Republic of Djibouti (Horn of Africa). Hydrogeol. J. 2004, 12, 159–170. [Google Scholar] [CrossRef]
- Raji, W.O.; Abdulkadir, K.A. Evaluation of Groundwater Potential of Bedrock Aquifers in Geological Sheet 223 Ilorin, Nigeria, Using Geo-Electric Sounding. Appl. Water Sci. 2020, 10, 220. [Google Scholar] [CrossRef]
- Shaji, E.; Sarath, K.V.; Santosh, M.; Krishnaprasad, P.K.; Arya, B.K.; Babu, M.S. Fluoride Contamination in Groundwater: A Global Review of the Status, Processes, Challenges, and Remedial Measures. Geosci. Front. 2024, 15, 101734. [Google Scholar] [CrossRef]
- Malago, J.; Makoba, E.; Muzuka, A.N.N. Fluoride Levels in Surface and Groundwater in Africa: A Review. Am. J. Water Sci. Eng. 2017, 3, 1–17. [Google Scholar] [CrossRef]
- Coetsiers, M.; Kilonzo, F.; Walraevens, K. Hydrochemistry and Source of High Fluoride in Groundwater of the Nairobi Area, Kenya. Hydrol. Sci. J. 2008, 53, 1230–1240. [Google Scholar] [CrossRef]
- Van den Broeck, S. The Sustainability of the Aynalem Well Field, Mekelle Ethiopia: A Hydrogeological Study. Master’s Thesis, Ghent University, Ghent, Belgium, 2019. [Google Scholar]
- Lear, D. Hydrogeology of the Aynalem Well Field, Tigray, Northern Ethiopia: Assessment and Modeling. Master’s Thesis, Ghent University, Ghent, Belgium, 2020. [Google Scholar]
- Anoubam, D.; Madhuri, S.; Tirumalesh, S.R. Evaluation of Groundwater Quality and Suitability for Irrigation and Drinking Purposes in Southwest Punjab, India Using Hydrochemical Approach. Appl. Water Sci. 2017, 7, 3137–3150. [Google Scholar] [CrossRef]
- Pellicer-Martínez, F.; Martínez-Paz, J.M. Assessment of Interbasin Groundwater Flows between Catchments Using a Semi-Distributed Water Balance Model. J. Hydrol. 2014, 519, 1848–1858. [Google Scholar] [CrossRef]
- Genereux, D.P.; Jordan, M. Interbasin Groundwater Flow and Groundwater Interaction with Surface Water in a Lowland Rainforest, Costa Rica: A Review. J. Hydrol. 2006, 320, 385–399. [Google Scholar] [CrossRef]
- Nelson, S.T.; Mayo, A.L. The Role of Interbasin Groundwater Transfers in Geologically Complex Terranes, Demonstrated by the Great Basin in the Western United States. Hydrogeol. J. 2014, 22, 807–828. [Google Scholar] [CrossRef]
- Han, P.; Wang, X.; Zhou, Y.; Yang, Z.; Wan, L.; Chen, J.; Jiang, X. Three-Dimensional Inter-Basin Groundwater Flow Toward a Groundwater-Fed Stream: Identification, Partition, and Quantification. J. Hydrol. 2024, 629, 130524. [Google Scholar] [CrossRef]
- Frisbee, M.D.; Tysor, E.H.; Stewart-Maddox, N.S.; Tsinnajinnie, L.M. Is There a Geomorphic Expression of Interbasin Groundwater Flow in Watersheds? Interactions between Interbasin Groundwater Flow, Springs, Streams, and Geomorphology. Geophys. Res. Lett. 2016, 43, 1158–1165. [Google Scholar] [CrossRef]
Study Area | Parameter | Number of Data (n) | Minimum Value | Maximum Value | Mean Value | Median Value | Standard Deviation | |
---|---|---|---|---|---|---|---|---|
Mount Meru | Groundwater recharge (mm/yr) | WTF method | 38 | 33 (3%) | 1320 (93%) | 193 (22%) | 85 | |
BFS method | 4 | 42 (4.8%) | 113 (13%) | 71 (8%) | ||||
Hydraulic transmissivity (m2/d) | 11 | 0.3 | 790 | 80 | 8.8 | |||
Water quality (TDS in mg/L) | 175 | 117 | 4214 | 987 | 867 | |||
Lake Tana Basin | Groundwater recharge (mm/yr) | WTF | 65 | 125 (8.7%) | 778 (54.3%) | 369 (25.8%) | ||
CMB | 255 | 164 (11.5%) | 404 (28%) | 346 (24.2%) | ||||
WetSpass | 90 m resolution | 120 (8.3%) | 1085 (76%) | 315 (22%) | ||||
Hydraulic transmissivity (m2/d) | Tertiary volcanic (36) | 0.4 | 860 | 101 | 184 | |||
Quaternary basalt (31) | 2.3 | 6904 | 510 | 1308 | ||||
Water quality (TDS in mg/L) | 301 | 79 | 3388 | 709 | 203 | |||
Beles Basin | Groundwater recharge (mm/yr) | WTF | 21 | 191 (12.4%) | 803 (52.3%) | 443 (28.8) | ||
CMB | 56 | 119 (12.4%) | 800 (52.1%) | 308 (20%) | ||||
WetSpass | 30 m Resolution | 110 (7.2%) | 916 (59.6) | 365 (23.8%) | ||||
Water quality (TDS in mg/L) | 3.8 | 667.2 | 248.5 | 218.8 | ||||
Mekelle area | Groundwater recharge (mm/yr) | WetSpass. WetSpa, WATERBAL models | 22 | 99 | 51 | 40 | 24 | |
SMB | 7 (1.3%) | 139 (25.4%) | 86 (15.7%) | |||||
WTF | 91 (16.6%) | 93 (17%) | 92 (16.8%) | |||||
CMB | 6 (1.1%) | 283 (51.6%) | 64 (11.7%) | |||||
Hydraulic transmissivity (m2/d) | 44 | 1 | 4757 | 604 | 94 | 1117 | ||
Water quality (TDS in mg/L) | 196 | 251 | 3287 | 1394 | 1224 | 532 | ||
Jifarah Plain | Groundwater recharge (mm/yr) | GRACE satellite | 1.6 (0.8%) | 7 (3.4%) | 4.3 (2.2%) | |||
Hydraulic transmissivity (m2/d) | Upper aquifer (19) | 2.2 | 135 | 45 | ||||
Lower Miocene (19) | 2.3 | 224 | 77 | |||||
Abu Shaybah (15) | 56 | 418 | 183 | |||||
Al Aziziyah (15) | 9.8 | 229 | 82 | |||||
Ras Hamia (15) | 2.3 | 418 | 118 | |||||
Water quality (TDS in mg/L) | 134 | 22 | 11,141 | 1806 | 1233 | 1645 |
Case Study Area | Groundwater Recharge (mm/year) | Transmissivity (m2/day) | Water Quality (TDS in mg/L) | Main Aquifer Type | Dominant Geology | Notable Observations |
---|---|---|---|---|---|---|
Lake Tana Basin | 125–778 (mean: 315) | 0.4–6904 (shallow aquifers: 101–510) | 79–3388 (mean: 709) | Fractured volcanic rocks (basalt) | Tertiary basalts, Quaternary volcanic rocks | High recharge in sloping aquifers enhanced by fractures. Preferential flow paths contribute significantly. Flat floodplain areas experience limited recharge due to aquifer storage constraints. Good water quality with occasional high nitrate levels in shallow systems. |
Beles Basin | 119–803 (mean: 365) | Similar range as Lake Tana Basin | 3.8–667 (mean: 248.5) | Fractured volcanic rocks, alluvium | Oligocene–Miocene basalts, alluvial soils | Inter-basin groundwater flow from Tana Basin plays a crucial role. High-flux springs at basin boundaries provide significant water resources. Heterogeneous aquifer properties due to complex geology and topography. |
Mount Meru | 33–1320 (mean: 193) | 0.3–790 (depending on aquifer type) | 117–4214 (mean: 987) | Volcanic pyroclastics, fractured lava | Pyroclastic deposits, debris avalanches | Significant spatial variability in recharge. High fluoride levels, especially in debris avalanche zones. Deep aquifers with fractured lava have better quality and potential for regional water supply. |
Mekelle Area | 22–99 (mean: 51) | 1–859 (limestone–marl has highest potential) | 251–3287 (mean: 1394) | Limestone–marl, fractured dolerites | Mesozoic sedimentary rocks, dolerites | High variability in transmissivity due to fractured and inter-bedded layers. Seasonal recharge variability limits water availability during dry months. High sulfate levels from gypsum dissolution reduce water quality in some locations. |
Jifarah Plain | 1.6–7 (mean: 4.3) | 2.2–4320 (depends on aquifer type and location) | 360–11,141 (mean: 1806) | Limestone–dolomite, sandstone | Miocene–Quaternary sediments | Very low recharge due to arid climate and high evaporation rates. Coastal areas show high salinity and nitrate pollution, likely from seawater intrusion and agricultural practices. Deep aquifers such as Ras Hamia are difficult to exploit due to low transmissivity and high TDS levels. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walraevens, K.; Bennett, G.; Alfarrah, N.; Gebreyohannes, T.; Berhane, G.; Hagos, M.; Hussien, A.; Nigate, F.; Belay, A.S.; Birhanu, A.; et al. Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics. Water 2025, 17, 109. https://doi.org/10.3390/w17010109
Walraevens K, Bennett G, Alfarrah N, Gebreyohannes T, Berhane G, Hagos M, Hussien A, Nigate F, Belay AS, Birhanu A, et al. Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics. Water. 2025; 17(1):109. https://doi.org/10.3390/w17010109
Chicago/Turabian StyleWalraevens, Kristine, George Bennett, Nawal Alfarrah, Tesfamichael Gebreyohannes, Gebremedhin Berhane, Miruts Hagos, Abdelwassie Hussien, Fenta Nigate, Ashebir Sewale Belay, Adugnaw Birhanu, and et al. 2025. "Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics" Water 17, no. 1: 109. https://doi.org/10.3390/w17010109
APA StyleWalraevens, K., Bennett, G., Alfarrah, N., Gebreyohannes, T., Berhane, G., Hagos, M., Hussien, A., Nigate, F., Belay, A. S., Birhanu, A., & Yenehun, A. (2025). Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics. Water, 17(1), 109. https://doi.org/10.3390/w17010109