Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Soil Erosion Model
- (1)
- Rainfall Erosivity (R)
- (2)
- Soil Erodibility (K)
- (3)
- Slope Length and Steepness (LS)
- (4)
- Vegetation Management (C)
- (5)
- Conservation Practice (P)
- (6)
- Soil Erosion Intensity Classification
2.3.2. Future Projection Methodology
- (1)
- Future climate data
- (2)
- Future Land Use Simulation
- (3)
- Future EVI Simulation
2.3.3. Geodetector Model
3. Results
3.1. Spatiotemporal Dynamics of Soil Erosion Intensity
3.2. Future Projections of Soil Erosion
3.3. Driving Factor Identification of Soil Erosion
4. Discussion
4.1. Influence of Climatic Factors on Soil Erosion
4.2. Impacts of Land Use Factors on Soil Erosion
4.3. Impacts of Topography and Soil Depth Factors on Soil Erosion
4.4. Limitations and Uncertainties
5. Conclusions
- (1)
- Soil erosion showed a decreasing trend from 2000 to 2020 in the study area. The multiyear average erosion modulus was 37.49 (moderate intensity). Total erosion decreased by 28.78% over 20 years, with 76.29% of the area showing reduced intensity, primarily attributed to the Grain-for-Green Program and protected area conservation.
- (2)
- Future soil erosion showed a decreasing trend but scenario-dependent heterogeneity. It will decrease by 9.94–35.95% (2030) and 4.93–25.58% (2050) versus the baseline. Erosion will increase under SSP126 and SSP585 but decrease under SSP245 and SSP370, highlighting the heterogeneity of soil erosion under different development pathways.
- (3)
- Factor interactions amplify their impacts on soil erosion. Land use type dominated as the core driver (q > 5%). Under different future climate scenarios, interactions between land use and PCI/temperature exhibited heightened sensitivity and significant fluctuations, emphasizing the critical regulatory role of future climate change on soil erosion.
- (4)
- Limitations and prospects. While this study coupled the USLE model with future land use and vegetation cover simulation models to effectively reveal the evolution characteristics and key driving factors of soil erosion under different scenarios, uncertainties in parameters and future data remain. Future research will integrate field observations to strengthen the in situ measurements of key parameters (K, C, P), optimize parameterization, and enhance the reliability of model simulation validation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SSPs | Shared Socioeconomic Pathways |
USLE | Universal Soil Loss Equation |
EVI | Enhanced Vegetation Index |
PCI | Precipitation Concentration index |
FLUS | Future Land Use Simulation |
References
- Li, P.; Chen, J.; Zhao, G.; Holden, J.; Liu, B.; Chan, F.; Hu, J.; Wu, P.; Mu, X. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Sci. Total Environ. 2022, 823, 153674. [Google Scholar] [CrossRef]
- Tian, P.; Tian, X.; Geng, R.; Zhao, G.; Yang, L.; Mu, X.; Gao, P.; Sun, W.; Liu, Y. Response of soil erosion to vegetation restoration and terracing on the Loess Plateau. Catena 2023, 227, 107103. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Dang, S. Variations in water and sediment of the Yellow River: Historical perspectives, current status, and future outlook. J. Hydraul. Eng. 2024, 55, 1135–1145. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Liu, S.; Yang, S.; Huang, E.; Ren, S.; Gong, L. Multi-effect synergistic induction of unsaturated MnO(x) on sandy sediment for enhanced manganese adsorption and byproduct resource recovery in solar evaporation. J. Hazard. Mater. 2025, 487, 137165. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Qin, T.; Yan, D.; Feng, J.; Liu, S.; Zhang, X.; Li, C. Evaluation of water-land resources regulation potential in the Yiluo River Basin, China. Ecol. Indic. 2023, 153, 110410. [Google Scholar] [CrossRef]
- Xu, S.; Qin, T.; Lu, J.; Liu, S.; Hou, J.; Feng, J.; Li, W.; Liu, H.; Abebe, S. Identification of driving mechanisms of actual evapotranspiration in the Yiluo River Basin based on structural equation modeling. Ecol. Process. 2024, 13, 69. [Google Scholar] [CrossRef]
- Zheng, F.L. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 2006, 16, 420–427. [Google Scholar] [CrossRef]
- Bai, R.; Wang, X.; Li, J.; Yang, F.; Shangguan, Z.; Deng, L. The impact of vegetation reconstruction on soil erosion in the Loess plateau. J. Environ. Manag. 2024, 363, 121382. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Q. Spatial pattern of soil erosion drivers and the contribution rate of human activities on the Loess Plateau from 2000 to 2015: A boundary line from northeast to southwest. Remote Sens. 2019, 11, 2429. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, B.; Zhao, Y.; Wang, K.; Zhao, M.; Ma, J.; Wu, J.; Xu, C.; Liu, W.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Gao, G.; Liang, Y.; Liu, J.; Dunkerley, D.; Fu, B. A modified RUSLE model to simulate soil erosion under different ecological restoration types in the loess hilly area. Int. Soil Water Conserv. Res. 2024, 12, 258–266. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B.; Alamri, A.; Park, H. A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Sci. Total Environ. 2022, 845, 157220. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Mu, X.; Zhao, G.; Sun, W. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stoch. Environ. Res. Risk Assess. 2017, 31, 1791–1803. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, W.; Wang, G.; Yang, S.; Pereira, P. Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China). Sci. Total Environ. 2021, 770, 144833. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Zhu, Q.; Yang, S.; Li, H.; Ma, H. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena 2017, 148, 195–203. [Google Scholar] [CrossRef]
- Ran, Q.; Chen, X.; Hong, Y.; Ye, S.; Gao, J. Impacts of terracing on hydrological processes: A case study from the Loess Plateau of China. J. Hydrol. 2020, 588, 125045. [Google Scholar] [CrossRef]
- Haidong, G.; Mengdie, W.; Xinjing, H. Check dams in the Yellow River basin: Sediment reduction efficiency and future development. Land. Degrad. Dev. 2024, 35, 4042–4054. [Google Scholar] [CrossRef]
- Yang, R.; Yang, S.; Chen, L.; Yang, Z.; Xu, L.; Zhang, X.; Liu, G.; Zhang, X.; Jiao, C.; Bai, R.; et al. Effect of vegetation restoration on soil erosion control and soil carbon and nitrogen dynamics: A meta-analysis. Soil Tillage Res. 2023, 230, 105705. [Google Scholar] [CrossRef]
- Gao, J.; Shi, C.; Yang, J.; Yue, H.; Liu, Y.; Chen, B. Analysis of spatiotemporal heterogeneity and influencing factors of soil erosion in a typical erosion zone of the southern red soil region, China. Ecol. Indic. 2023, 154, 110590. [Google Scholar] [CrossRef]
- Cao, Y.; Hua, L.; Tang, Q.; Lin Liu, L.; Cai, C. Evaluation of monthly-scale soil erosion spatio-temporal dynamics and identification of their driving factors in Northeast China. Ecol. Indic. 2023, 150, 110187. [Google Scholar] [CrossRef]
- Sahour, H.; Gholami, V.; Vazifedan, M.; Saeedi, S. Machine learning applications for water-induced soil erosion modeling and mapping. Soil Tillage Res. 2021, 211, 105032. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, J.; Tan, M.L.; Lu, P.; Xue, Z.; Liu, M.; Wang, X. Impacts of vegetation restoration on soil erosion in the Yellow River Basin, China. Catena 2024, 234, 107547. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, Y.; Shi, Z.H.; López-Vicente, M.; Wu, G. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena 2020, 195, 104787. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Leonidas Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, C.; Wang, Y.; Wang, Y.; Li, M. Comprehensive evaluation of the effects of climate change and land use and land cover change variables on runoff and sediment discharge. Sci. Total Environ. 2020, 702, 134401. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, S.K.; Dubey, A.K.; Ray, R.L.; Mustak, S.; Rawat, K.S. Prediction of soil erosion risk using earth observation data under recent emission scenarios of CMIP6. Geocarto Int. 2022, 37, 7041–7064. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Yue, Y.; Jin, Y.; Zhang, B. Impacts of climate and land use change on terrestrial carbon storage: A multi-scenario case study in the Yellow River Basin (1992–2050). Sci. Total Environ. 2024, 930, 172557. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; de Vente, J. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Liu, Y.; Fan, F. Identification of the geographical factors influencing the relationships between ecosystem services in the Belt and Road region from 2010 to 2030. J. Clean. Prod. 2020, 275, 124153. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Zhou, G.; Sun, Z.; Zhu, X. Calculation tool of topographic factors. Sci. Soil Water Conserv. 2015, 13, 105–110. [Google Scholar] [CrossRef]
- Cai, C.; Ding, A.; Shi, Z.; Huang, L.; Zhang, G. Study of Applying USLE and Geographical Information System IDRISI to Predict Soil Erosion in Small Watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.; Li, G.; Chen, H. Soil Erosion and Sediment Yield Assessment Based on RUSLE in Beiluo River on the Loess Plateau, China. J. Soil Water Conserv. 2017, 31, 32–37. [Google Scholar] [CrossRef]
- Wu, C.; Wang, S. Sensitivity evaluation of soil erosion in Lanzhou section of the Yellow River Basin. Sci. Technol. Eng. 2021, 21, 12390–12397. [Google Scholar]
- SL 190-2007; Standard for Classification and Grading of Soil Erosion. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2008.
- Zhang, Q.; Zhu, B.; Yang, J.H.; Ma, P.; Liu, X.; Lu, G.; Wang, Y.; Yu, H.; Liu, W.; Wang, D. New characteristics about the climate humidification trend in Northwest China. Chin. Sci. Bull. 2021, 66, 3757–3771. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban. Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban. Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Hou, J.; Yan, D.; Qin, T.; Liu, S.; Yan, S.; Li, J.; Abebe, S.; Cao, X. Evolution and attribution of water yield coefficient in the Yiluo river basin. Front. Environ. Sci. 2022, 10, 1067318. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Xie, Y.; Leng, G.; Huang, Q.; Wang, L.; Xue, Q. Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications. Catena 2018, 166, 279–289. [Google Scholar] [CrossRef]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westr, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Hong, X.D.; et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Ayat, H.; Evans, J.P.; Sherwood, S.C.; Soderholm, J. Intensification of subhourly heavy rainfall. Science 2022, 378, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fang, Q.; Hou, R.; Wu, F. Effect of rainfall intensity and duration on soil erosion on slopes with different microrelief patterns. Geoderma 2021, 396, 115085. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, T.; Li, J.; Xin, Y.; Ding, M. Future changes in global rainfall erosivity: Insights from the precipitation changes. J. Hydrol. 2024, 638, 131435. [Google Scholar] [CrossRef]
- Guo, W.; Liu, M.; Zhang, Q.; Deng, Y.; Chu, Z.; Qin, H.; Li, Y.; Liu, Y.; Zhang, H.; Zhang, W.; et al. Warming-Induced Vegetation Greening May Aggravate Soil Mercury Levels Worldwide. Environ. Sci. Technol. 2024, 58, 15078–15089. [Google Scholar] [CrossRef]
- Jin, X.Y.; Jin, H.J.; Iwahana, G.; Marchenko, S.S.; Luo, D.; Li, X.; Liang, S. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Change Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Dong, Y.; Yang, Z.; Govers, G. How soil erosion and runoff are related to land use, topography and annual precipitation: Insights from a meta-analysis of erosion plots in China. Sci. Total Environ. 2022, 802, 149665. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Li, P.; Li, Z.; Sun, J.; Wang, D.; Min, Z. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Hou, J.; Qin, T.; Liu, S.; Wang, J.; Dong, B.; Yan, S.; Nie, H. Analysis and Prediction of Ecosystem Service Values Based on Land Use/Cover Change in the Yiluo River Basin. Sustainability 2021, 13, 6432. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.; Li, Z.; Liu, J.; Wang, D.; Wang, L.; Tang, C. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecol. Eng. 2019, 132, 109–114. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Wang, Y.; Sun, H.; Li, Q. Threshold effects of vegetation coverage on runoff and soil loss in the Loess Plateau of China: A meta-analysis. Geoderma 2022, 412, 115720. [Google Scholar] [CrossRef]
- Whitney, J.W.; Glancy, P.A.; Buckingham, S.E.; Ehrenber, A.C. Effects of rapid urbanization on streamflow, erosion, and sedimentation in a desert stream in the American Southwest. Anthropocene 2015, 10, 29–42. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Global sediment yields from urban and urbanizing watersheds. Earth-Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanov, A.; Vericat, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Zhang, Y.; Bing, M.; Liu, Y.; Wu, J.; Hai, X.; Li, A.; Wang, K.; Wu, P.; et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manag. 2022, 302, 113985. [Google Scholar] [CrossRef]
Types | Years | Sources | Descriptions |
---|---|---|---|
Precipitation | 1961–2020 | http://data.cma.cn/ (accessed on 1 June 2025) | Daily data |
Temperature | |||
DEM | 2000 | http://www.gscloud.cn/ (accessed on 1 June 2025) | 90 m resolution |
Land use | 2000, 2010, 2020 | http://www.ncdc.ac.cn (accessed on 1 1 June 2025) | 30 m resolution |
EVI | 2001–2020 | https://lpdaac.usgs.gov/ (accessed on 1 June 2025) | 250 m resolution |
Soil depth | 2018 | http://globalchange.bnu.edu.cn/research/cdtb.jsp (accessed on 1 June 2025) | 100 m resolution |
Soil type | 2009 | http://www.geodata.cn/ (accessed on 1 June 2025) | 1000 m resolution |
Soil erosion | 2001–2020 | Sediment Bulletin of the Yellow River | - |
Future precipitation | 2021–2050 | https://aims2.llnl.gov/search/cmip6/ (accessed on 1 June 2025) | 1000 m resolution |
Future temperature |
Level | Slight | Light | Moderate | Strong | Severe | Violent |
---|---|---|---|---|---|---|
Soil erosion modulus t/(hm2·a) | <5 | 5~25 | 25~50 | 50~80 | 80~150 | >150 |
Driving Factors | Code Name | Method/Data Source | Descriptions |
---|---|---|---|
Land use | X1 | See Table 1 | Land use categories |
Vegetation coverage | X2 | Mean value method | Annual mean vegetation coverage |
Temperature | X3 | Mean value method | Annual mean temperature |
Precipitation concentration | X4 | Precipitation concentration index (PCI) | Intra-annual precipitation distribution |
Annual precipitation | X5 | Mean value method | Annual precipitation |
Heavy rainfall days | X6 | Daily precipitation > 25 mm | Annual heavy rainfall days |
Elevation | X7 | See Table 1 | Topographic elevation |
Slope | X8 | Derived from DEM | Terrain steepness |
Soil depth | X9 | See Table 1 | Soil layer thickness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Wang, J.; Chen, X.; Hu, Y.; Dong, G. Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios. Water 2025, 17, 2157. https://doi.org/10.3390/w17142157
Hou J, Wang J, Chen X, Hu Y, Dong G. Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios. Water. 2025; 17(14):2157. https://doi.org/10.3390/w17142157
Chicago/Turabian StyleHou, Jun, Jianwei Wang, Xiaofeng Chen, Yong Hu, and Guoqiang Dong. 2025. "Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios" Water 17, no. 14: 2157. https://doi.org/10.3390/w17142157
APA StyleHou, J., Wang, J., Chen, X., Hu, Y., & Dong, G. (2025). Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios. Water, 17(14), 2157. https://doi.org/10.3390/w17142157