Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Water and Sediment Sampling
2.3. Statistical Analysis
2.4. Sediment Risk Evaluation Indicators
2.4.1. Enrichment Factor (EF)
2.4.2. Geoaccumulation Index (Igeo)
2.5. Evaluation of Health Risks
2.5.1. Chronic Daily Intake (CDI)
2.5.2. Non-Carcinogenic Risks
2.5.3. Carcinogenic Risk (CR)
3. Results and Discussion
3.1. Chemical Elements in Sediments
3.2. Correlation of the Chemical Elements in the Sediments
3.3. Sediment Risk Evaluation Indicators
3.3.1. Enrichment Factor (EF)
3.3.2. Geoaccumulation Index (Igeo)
3.4. Chemical Elements in Water
3.5. Evaluation of Human Health Risk
3.5.1. Non-Carcinogenic Risk—CDI Ingestion
3.5.2. Non-Carcinogenic Risk—CDI Dermal
3.5.3. Hazard Quotient (HQ) and Hazard Index (HI)
3.5.4. Carcinogenic Risk (CR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alavaisha, E.; Lyon, S.W.; Lindborg, R. Assessment of water quality across irrigation schemes: A case study of wetland agriculture impacts in Kilombero Valley, Tanzania. Water 2019, 11, 671. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, E.O.; Msagati, T. Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele River, South Africa. Open Chem. 2017, 15, 272–282. [Google Scholar] [CrossRef]
- Addo-Bediako, A. Effects of trace elements on benthic macroinvertebrate distribution in the sediments of two rivers in the Olifants River Basin, South Africa. J. Freshw. Ecol. 2023, 38, 2172084. [Google Scholar] [CrossRef]
- Aydin, H.; Ustaoğlu, F.; Tepe, Y.; Soylu, E.N. Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environ. Forensics 2021, 22, 270–287. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Liu, L.; Wang, Y.; Song, Z.; Wang, X.; Liu, C.; Li, Y.; Meng, W.; Zhou, Y.; et al. Occurrence and risk assessment of heavy metals in an urban river supplied by reclaimed wastewater. Water Environ. Res. 2020, 92, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pandita, S.; Sharma, A.; Sharma, V.; Sharma, M.; Cerda, A. Combination of contamination indices and ecological risk assessment index for evaluation of pollution level in sediments. In Heavy Metals in the Environment; Kumar, V., Sharma, A., Cerda, A., Eds.; Elsevier: Oxford, UK, 2021; pp. 99–117. [Google Scholar]
- Al-Mutairi, K.A.; Yap, C.K. A review of heavy metals in coastal surface sediments from the Red sea: Health ecological risk assessments. Int. J. Environ. Res. Public Health 2021, 8, 2798. [Google Scholar] [CrossRef] [PubMed]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.; Msagati, T. Assessment of trace metals contamination of surface water and sediment: A case study of Mvudi River. South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Chiaia-Hernández, A.C.; Casado-Martinez, C.; Lara-Martin, P.; Thomas, D.; Buchel, T.D. Sediments: Sink, archive, and source of contaminants. Environ. Sci. Pollut. Res. 2022, 29, 85761–85765. [Google Scholar] [CrossRef] [PubMed]
- Mohajane, C.; Manjoro, M. Sediment-associated heavy metal contamination and potential ecological risk along an urban river in South Africa. Heliyon 2022, 8, e12499. [Google Scholar] [CrossRef] [PubMed]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Haghnazar, H.; Hudson-Edwards, K.A.; Kumar, V.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021, 285, 131446. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.A.; Singh, D.V.; Qadri, H.; Dar, G.H.; Dervash, M.A.; Bhat, S.A.; Unal, B.T.; Ozturk, M.; Hakeem, K.R.; Yousaf, B. Vulnerability of municipal solid waste: An emerging threat to aquatic ecosystems. Chemosphere 2022, 287, 132223. [Google Scholar] [CrossRef] [PubMed]
- Egbueri, J.C.; Enyigwe, M.T. Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka Metallogenic District in Southeastern Nigeria. Anal. Lett. 2020, 53, 17. [Google Scholar] [CrossRef]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Mattson, Z.; Maree, G.; Vogel, C.; Lynch, A.; Olivier, D.; Terblanche, D. Shape of a water crisis: Practitioner perspectives on urban water scarcity and ‘Day Zero’in South Africa. Water Policy 2020, 22, 193–210. [Google Scholar] [CrossRef]
- Hedden, S.; Cilliers, J. Parched prospects: The emerging water crisis in South Africa. South African Futures Paper, 15 September 2014; p. 2. [Google Scholar]
- Maswanganyi, C.; Tshilongo, J.; Mkhohlakali, A.; Martin, L. Investigation of BTX concentrations and effects of meteorological parameters in the Steelpoort area of Limpopo Province, South Africa. Atmosphere 2024, 15, 552. [Google Scholar] [CrossRef]
- Brady, J.P.; Ayoko, G.A.; Martens, W.N.; Goonetilleke, A. Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Mar. Pollut. Bull. 2014, 81, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Lin, Q.; Bao, K.; Zhao, H.; Zhang, Z.; Xing, W.; Wang, G. Historical variation and recent ecological risk of heavy metals in wetland sediments along Wusuli River, Northeast China. Environ. Earth Sci. 2014, 72, 4345. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Muller, G. Index of Geo-Accumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- United State Environmental Protection Agency (USEPA). Integrated Risk Information System. 2016. Available online: https://www.epa.gov/iris (accessed on 17 March 2025).
- Liang, B.; Han, G.; Liu, M.; Li, X.; Song, C.; Zhang, Q.; Yang, K. Spatial and temporal variation of dissolved heavy metals in the Mun River, Northeast Thailand. Water 2019, 11, 380. [Google Scholar] [CrossRef]
- United State Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); USEPA: Washington DC, USA, 2004; EPA/540/R/99/005, OSWER 9285.7–02EP, PB99–963312.
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for SuperfundT. In Human Health Evaluation Manual; USEPA: Washington, DC, USA, 1989; Volume I, EPA/540/1-89/002. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Drinking Water Standards and Health Advisories; EPA 822-R-09-011; Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- Li, S.Y.; Zhang, Q.F. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J. Hazard. Mater. 2010, 176, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Madilonga, R.T.; Edokpayi, J.N.; Volenzo, E.T.; Durowoju, O.S.; Odiyo, J.O. Water Quality Assessment and Evaluation of Human Health Risk in Mutangwi River, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 6765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, Q.; Gao, S.; Wang, Z.; He, S. Distribution, source, water quality and health risk assessment of dissolved heavy metals in major rivers in Wuhan, China. PeerJ 2021, 9, e11853. [Google Scholar] [CrossRef] [PubMed]
- United State Environmental Protection Agency (USEPA). Guidelines for carcinogen risk assessment. Fed. Regist. 2005, 804, 636–640. [Google Scholar]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Maitera, O.N.; Ogugbuaja, V.O.; Barminas, J.T. Determination of trace metal levels in water and sediments of River Benue in Adamawa State, Nigeria. J. Ecol. Nat. Environ. 2011, 4, 149. [Google Scholar]
- Hao, J.; Ren, J.; Tao, L.; Fang, H.; Gao, S.; Chin, Y. Pollution evaluation and sources identification of heavy metals in surface sediments from Upstream of Yellow River. Pol. J. Environ. Stud. 2021, 30, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Burton, G., Jr. Sediment quality criteria in use around the world. Limnology 2002, 3, 65–76. [Google Scholar] [CrossRef]
- Kim, I.; Kim, Y.; Kim, R.; Hyon, T. Spatial distribution, origin and contamination assessment of heavy metals in surface sediments from Jangsong tidal flat, Kangryong river estuary, DPR Korea. Mar. Pollut. Bull. 2021, 168, 112414. [Google Scholar] [CrossRef] [PubMed]
- Shu, Q.; Ma, Y.; Liu, Q.; Zhang, S.; Hu, Z.; Yang, P. Levels and ecological risk of heavy metals in the surface sediments of tidal flats along the North Jiangsu coast, China. Mar. Pollut. Bull. 2021, 170, 112663. [Google Scholar] [CrossRef] [PubMed]
- Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines for the Protection of Aquatic Life and Sediment Quality Guidelines for the Protection of Aquatic Life; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2012. [Google Scholar]
- Goher, M.E.; Ali, M.H.H.; El-Sayed, S.M. Heavy metals contents in Nasser Lake and the Nile River, Egypt: An overview. Egypt. J. Aquat. Res. 2019, 45, 301. [Google Scholar] [CrossRef]
- Islam, M.S.; Mohanta, S.C.; Siddique, M.A.B.; Abdullah-Al-Mamun, M.; Hossain, N.; Bithi, U.H. Physico-chemical assessment of water quality parameters in Rupsha River of Khulna region, Bangladesh. Int. J. Eng. Sci. 2018, 7, 73–78. [Google Scholar]
- Adamu, C.I.; Nganje, T.N.; Edet, A. Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State: Southeastern Nigeria. Environ. Nanotechnol. Monit. Manag. 2015, 3, 10. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhang, F.; Hu, P.; Hough, R.; Fu, Q.; Zhang, Z.; An, L.; Li, Y.-F.; Li, K.; Liu, D.; et al. Heavy metals in sediment from the urban and rural rivers in Harbin City, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 4313. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yu, J.; Cao, Z.; Meng, M.; Yang, L.; Chen, Q. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. Int. J. Environ. Res. Public Health 2020, 17, 5359. [Google Scholar] [CrossRef] [PubMed]
- IPCS (International Programme on Chemical Safety). Nickel; World Health Organization Environmental Health Criteria: Geneva, Switzerland, 1991; Volume 108. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Nickel in Drinking-Water; Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Addo-Bediako, A. Comparative Spatial Assessment of Trace Metal(loid) Pollution in the sediments of the Lower Olifants River Basin in South Africa. Front. Environ. Sci. 2022, 10, 882393. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; Word Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- South African National Standards (SANS). South African National Standards 241-1-2015, 2nd ed.; SABS: Pretoria, South Africa, 2015. [Google Scholar]
- Pandey, L.K.; Park, J.; Son, D.H.; Kim, W.; Islam, M.S.; Choi, S.; Lee, H.; Han, T. Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci. Total Environ. 2019, 651, 323. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Fallahzadeh, R.A.; Khosravi, R.; Dehdashti, B.; Ghahramani, E.; Omidi, F.; Adli, A.; Miri, M. Spatial distribution variation and probabilistic risk assessment of exposure to chromium in ground water supplies; a case study in the east of Iran. Food Chem. Toxicol. 2018, 115, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.D.S.; Fontes, M.P.F.; Pacheco, A.A.; Lima, H.N.; Santos, J.Z.L. Risk Assessment of Trace Elements Pollution of Manaus Urban Rivers. Sci. Total Environ. 2019, 709, 134471. [Google Scholar] [CrossRef] [PubMed]
- Custodio, M.; Cuadrado, W.; Peñaloza, R.; Montalvo, R.; Ochoa, S.; Quispe, J. Human Risk from Exposure to Heavy Metals and Arsenic in Water from Rivers with Mining Influence in the Central Andes of Peru. Water 2020, 12, 1946. [Google Scholar] [CrossRef]
- Hossain, M.; Patra, P.K. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. Ecotoxicol. Environ. Saf. 2020, 189, 110038. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.N.; Panahande, M.; Yousefi, M.; Asghari, F.B.; Conti, G.O.; Talaee, E.; Mohammadi, A.A. Carcinogenic and Non-carcinogenic Risk Assessment of Heavy Metals in Groundwater Wells in Neyshabur Plain, Iran. Biol. Trace Elem. Res. 2019, 190, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Mutileni, N.; Mudau, M.; Edokpayi, J.N. Water quality, geochemistry and human health risk of groundwater in the Vyeboom region, Limpopo province, South Africa. Sci. Rep. 2023, 13, 19071. [Google Scholar] [CrossRef]
- Addo-Bediako, A. Risk of Chemical Pollution in Olifants River Basin, South Africa: Human Health Implications. Limnol. Rev. 2025, 25, 1. [Google Scholar] [CrossRef]
- Paul, D. Research on heavy metal pollution of river Ganga: A review. Ann. Agrar. Sci. 2017, 15, 278–286. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Lei, C.; Chen, Y.-C. Evaluating the health costs of oral hexavalent chromium exposure from water pollution: A case study in Taiwan. J. Clean. Prod. 2018, 172, 819–826. [Google Scholar] [CrossRef]
- Kumar, M.; Ramanathan, A.; Tripathi, R.; Farswan, S.; Kumar, D.; Bhattacharya, P. A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India. Chemosphere 2017, 166, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Lin, C.; Shern, C.-C.; Yeh, G.; Le, V.G.; Tran, H.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [Google Scholar] [CrossRef]
- Liu, C.M.; Ma, J.Q.; Xie, W.R.; Liu, S.S.; Feng, Z.J.; Zheng, G.H.; Wang, A.M. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-jB pathway. Food Chem. Toxicol. 2015, 82, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Huang, C.; Wang, J.; Huang, H.; Li, J.; Xie, Q.; Liu, Y.; Zhu, J.; Li, Y.; Zhang, D.; et al. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1a translation. Oncogene 2017, 36, 3878–3889. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
EF Classes | Enrichment Level | Igeo Value | Igeo Class | Contamination Level |
---|---|---|---|---|
EF < 1 | No enrichment | Igeo ≤ 0 | 0 | Uncontaminated |
EF = 1–3 | Minor enrichment | Igeo = 0–1 | 1 | Uncontaminated/moderately contaminated |
EF = 3–5 | Moderate enrichment | Igeo = 1–2 | 2 | Moderately contaminated |
EF = 5–10 | Moderately severe enrichment | Igeo = 2–3 | 3 | Moderately/strongly contaminated |
EF = 10–25 | Severe enrichment | Igeo = 3–4 | 4 | Strongly contaminated |
EF = 25–50 | Very severe enrichment | Igeo = 4–5 | 5 | Strongly/extremely contaminated |
EF > 50 | Extremely severe enrichment | Igeo > 5 | 6 | Extremely contaminated |
Parameter | Unit | Child | Adult |
---|---|---|---|
Exposure frequency (EF) | Day/year | 365 | 365 |
Body weight (BW) | kg | 15 | 70 |
Ingestion rate (IR) or daily intake (DI) | L/day | 1.8 | 2.2 |
Exposure duration (ED) | Years | 6 | 70 |
Skin surface area (SA) | cm3 | 6600 | 18,000 |
Exposure time (ET) | Hours/day | 1 | 0.58 |
Conversion factor (CF) | L/cm3 | 0.001 | 0.001 |
Average time (AT) | Days | 365 × 6 | 365 × 70 |
Particular emission factor (PEM) | Days m3/kg | 1.3 × 109 | 1.3 × 103 |
Elements (mg/kg) | High Flow | Low Flow | Intermittent Flow | SQG * | Average Shale Value |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |||
As | 0.608 ± 0.3 | 0.802 ± 0.2 | 1.39 ± 0.99 | 5.9 | 13 |
Cr | 5619 ± 2362 | 3176.7 ± 648 | 4000 ± 2070 | 37.3 | 90 |
Cu | 9.46 ± 4.9 | 10.71 ± 2.9 | 20.55 ± 15.5 | 35.7 | 45 |
Fe | 38,469 ± 8017 | 35,267.9 ± 2866 | 34,362 ± 3317 | - | 47,200 |
Mn | 1183.1 ± 171 | 1273.3 ± 239 | 1124.3 ± 323 | - | 850 |
Ni | 306.71 ± 40 | 319.3 ± 81.4 | 263.0 ± 84 | - | 68 |
Pb | 4.09 ± 1.65 | 3.62 ± 1.7 | 6.59 ± 4.1 | 35 | 20 |
Zn | 52.14 ± 12 | 46.43 ± 8.4 | 48.7 ± 9.2 | 123 | 95 |
Element | As | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
As | 1.000 | |||||||
Cr | −0.333 | 1.000 | ||||||
Cu | 0.749 | −0.533 | 1.000 | |||||
Fe | 0.080 | 0.668 | 0.027 | 1.000 | ||||
Mn | −0.358 | 0.589 | −0.175 | 0.426 | 1.000 | |||
Ni | −0.436 | 0.484 | −0.247 | 0.252 | 0.928 | 1.000 | ||
Pb | 0.595 | −0.428 | 0.386 | −0.071 | −0.771 | −0.863 | 1.000 | |
Zn | −0.069 | 0.764 | −0.064 | 0.670 | 0.749 | 0.696 | −0.486 | 1.000 |
Element | HF | LF | IF |
---|---|---|---|
As | 0.057 | 0.083 | 0.147 |
Cr | 76.60 | 47.239 | 61.05 |
Cu | 0.258 | 0.319 | 0.627 |
Fe | 1.000 | 1.000 | 1.00 |
Mn | 1.71 | 2.005 | 1.817 |
Ni | 5.79 | 6.28 | 5.313 |
Pb | 0.251 | 0.242 | 0.453 |
Zn | 0.673 | 0.654 | 0.704 |
Elements (mg/L) | High Flow | Low Flow | Intermittent Flow | SANS | USEPA | WHO |
---|---|---|---|---|---|---|
As | 0.002 ± 0.0 | 0.002 ± 0 | 0.003 ± 0.002 | 0.01 | 0.05 | 0.01 |
Cr | 8.06 ± 5.9 | 7.95 ± 1.62 | 10.01 ± 5.19 | 0.05 | 0.1 | 0.05 |
Cu | 0.024 ± 0.013 | 0.027 ± 0.007 | 0.05 ± 0.04 | 2.0 | 1.3 | 2.0 |
Fe | 96.3 ± 20.0 | 88.3 ± 7.5 | 86.0 ± 8.3 | 0.3 | 0.3 | 0.3 |
Mn | 2.96 ± 0.43 | 3.19 ± 0.6 | 2.81 ± 0.8 | 0.01 | 0.3 | 0.04 |
Ni | 0.77 ± 0.1 | 0.799 ± 0.2 | 0.66 ± 0.21 | 0.07 | 0.1 | 0.02 |
Pb | 0.01 ± 0.004 | 0.009 ± 0.001 | 0.016 ± 0.01 | 0.015 | 0.01 | |
Zn | 0.13 ± 0.03 | 0.12 ± 0.021 | 0.12 ± 0.023 | 5.0 | 5.0 | 3.0 |
Dermal | RfD | High Flow | Low Flow | Intermittent Flow | High Flow | Low Flow | Intermittent Flow |
---|---|---|---|---|---|---|---|
mg·kg−1·day−1 | Adult | Adult | Adult | Child | Child | Child | |
As | 0.0003 | 6.3 × 10−5 | 6.3 × 10−5 | 9.4 × 10−5 | 2.4 × 10−4 | 2.4 × 10−4 | 3.6 × 10−4 |
Cr | 0.003 | 2.5 × 10−1 | 2.2 × 10−1 | 2.8 × 10−1 | 9.7 × 10−1 | 8.6 × 10−1 | 1.10 |
Cu | 0.04 | 7.5 × 10−4 | 8.5 × 10−4 | 1.6 × 10−3 | 2.9 × 10−3 | 3.2 × 10−3 | 6.1 × 10−3 |
Fe | 0.7 | 6.2 × 10−1 | 5.8 × 10−1 | 5.8 × 10−1 | 2.40 | 2.20 | 2.20 |
Mn | 0.14 | 9.3 × 10−2 | 1.0 × 10−1 | 8.8 × 10−2 | 3.6 × 10−1 | 3.8 × 10−1 | 3.4 × 10−1 |
Ni | 0.02 | 2.4 × 10−2 | 2.5 × 10−2 | 2.1 × 10−2 | 9.2 × 10−2 | 9.6 × 10−2 | 7.9 × 10−2 |
Pb | 0.0014 | 3.1 × 10−4 | 2.8 × 10−4 | 5.0 × 10−4 | 1.2 × 10−3 | 1.1 × 10−3 | 1.9 × 10−3 |
Zn | 0.3 | 4.1 × 10−3 | 3.6 × 10−3 | 3.8 × 10−3 | 1.6 × 10−2 | 1.4 × 10−2 | 1.5 × 10−2 |
Dermal | RfD | High Flow | Low Flow | Intermittent Flow | High Flow | Low Flow | Intermittent Flow |
---|---|---|---|---|---|---|---|
mg·kg−1·day−1 | Adult | Adult | Adult | Child | Child | Child | |
As | 0.000123 | 6.6 × 10−7 | 6.6 × 10−7 | 9.8 × 10−7 | 1.6 × 10−6 | 1.6 × 10−6 | 2.4 × 10−6 |
Cr | 0.000075 | 5.3 × 10−3 | 4.7 × 10−3 | 5.9 × 10−3 | 1.3 × 10−2 | 1.1 × 10−2 | 1.4 × 10−2 |
Cu | 0.012 | 7.9 × 10−6 | 8.9 × 10−6 | 1.7 × 10−5 | 1.9 × 10−5 | 2.1 × 10−5 | 4.0 × 10−5 |
Fe | 0.045 | 6.4 × 10−3 | 6.0 × 10−3 | 6.1 × 10−3 | 1.6 × 10−2 | 1.4 × 10−2 | 1.5 × 10−2 |
Mn | 0.00096 | 9.7 × 10−4 | 1.0 × 10−3 | 9.2 × 10−4 | 2.3 × 10−3 | 2.5 × 10−3 | 2.2 × 10−3 |
Ni | 0.0008 | 1.0 × 10−3 | 1.0 × 10−3 | 8.6 × 10−4 | 2.4 × 10−3 | 2.5 × 10−3 | 2.1 × 10−3 |
Pb | 0.00042 | 1.3 × 10−5 | 1.2 × 10−5 | 2.1 × 10−5 | 3.2 × 10−5 | 2.9 × 10−5 | 5.1 × 10−5 |
Zn | 0.06 | 2.6 × 10−4 | 2.3 × 10−4 | 2.4 × 10−4 | 6.2 × 10−4 | 5.5 × 10−4 | 5.8 × 10−4 |
Element | Adult | Child | Adult | Child | Adult | Child |
---|---|---|---|---|---|---|
High Flow | HQing | HQder | HI | HI | ||
As | 0.209524 | 0.8 | 0.0053 | 0.0129 | 0.2149 | 0.8129 |
Cr | 10.550 | 40.30 | 70.50 | 170.0 | 81.05 | 210.30 |
Cu | 0.0189 | 0.072 | 0.0007 | 0.0016 | 0.0195 | 0.0736 |
Fe | 0.880 | 3.360 | 0.141 | 0.342 | 1.022 | 3.701 |
Mn | 0.6645 | 2.5371 | 1.0117 | 2.442 | 1.6762 | 4.9791 |
Ni | 1.2069 | 4.608 | 1.2601 | 3.0413 | 2.4668 | 7.6493 |
Pb | 0.2245 | 0.8571 | 0.0312 | 0.0754 | 0.2557 | 0.9325 |
Zn | 0.0137 | 0.0524 | 0.0043 | 0.0104 | 0.0180 | 0.0628 |
Low Flow | ||||||
As | 0.2095 | 0.800 | 0.0053 | 0.0129 | 0.2149 | 0.8129 |
Cr | 74.910 | 286.0 | 62.61 | 151.0 | 142.5 | 437.0 |
Cu | 0.0212 | 0.081 | 0.0007 | 0,0018 | 0.0220 | 0.0828 |
Fe | 0.821 | 3.140 | 0.133 | 0.322 | 0.953 | 3.472 |
Mn | 0.7161 | 2.7343 | 1.0903 | 2.6318 | 1.8064 | 5.3660 |
Ni | 1.2556 | 4.794 | 1.3108 | 3.1640 | 2.5664 | 7.9580 |
Pb | 0.2020 | 0.7714 | 0.0281 | 0.0679 | 0.2302 | 0.8393 |
Zn | 0.0122 | 0.0464 | 0.0038 | 0.0092 | 0.0160 | 0.0556 |
Intermittent Flow | ||||||
As | 0.3143 | 1.200 | 0.008 | 0.0193 | 0.3223 | 1.2193 |
Cr | 94.40 | 360.40 | 78.81 | 190.30 | 173.21 | 550.70 |
Cu | 0.0401 | 0.153 | 0.0014 | 0.0034 | 0.0415 | 0.1564 |
Fe | 0.840 | 3.190 | 0.141 | 0.331 | 0.980 | 3.521 |
Mn | 0.6308 | 2.4086 | 0.9604 | 2.3183 | 1.5912 | 4.7268 |
Ni | 1.034 | 3.948 | 1.0795 | 2.6057 | 2.1135 | 6.5537 |
Pb | 0.3592 | 1.3715 | 0.0500 | 0.1207 | 0.4092 | 1.4921 |
Zn | 0.0128 | 0.0488 | 0.004 | 0.0097 | 0.0168 | 0.0585 |
Age/Flow Regime | As | Cr | Ni | Pb |
---|---|---|---|---|
Adult (High flow) | 9.43 × 10−5 | 1.22 × 10−1 | 4.10 × 10−2 | 2.67 × 10−6 |
Adult (Low flow) | 9.43 × 10−5 | 1.11 × 10−1 | 4.26 × 10−2 | 2.40 × 10−6 |
Adult (Intermittent flow) | 1.41 × 10−4 | 1.42 × 10−1 | 3.52 × 10−2 | 4.27 × 10−6 |
Child (High flow) | 3.60 × 10−4 | 4.84 × 10−1 | 1.57 × 10−1 | 1.02 × 10−5 |
Child (Low flow) | 3.60 × 10−4 | 4.29 × 10−1 | 1.63 × 10−1 | 9.18 × 10−6 |
Child (Intermittent flow) | 5.40 × 10−4 | 5.41 × 10−1 | 1.34 × 10−1 | 1.63 × 10−5 |
Age/Flow Regime | As | Cr |
---|---|---|
Adult (High flow) | 2.40 × 10−6 | 1.06 × 10−1 |
Adult (Low flow) | 2.40 × 10−6 | 9.40 × 10−2 |
Adult (Intermittent flow) | 3.60 × 10−6 | 1.18 × 10−1 |
Child (High flow) | 5.86 × 10−6 | 2.06 × 10−1 |
Child (Low flow) | 5.86 × 10−6 | 2.20 × 10−1 |
Child (Intermittent flow) | 8.78 × 10−6 | 2.80 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addo-Bediako, A.; Matita, T.; Luus-Powell, W. Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa. Water 2025, 17, 2200. https://doi.org/10.3390/w17152200
Addo-Bediako A, Matita T, Luus-Powell W. Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa. Water. 2025; 17(15):2200. https://doi.org/10.3390/w17152200
Chicago/Turabian StyleAddo-Bediako, Abraham, Thato Matita, and Wilmien Luus-Powell. 2025. "Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa" Water 17, no. 15: 2200. https://doi.org/10.3390/w17152200
APA StyleAddo-Bediako, A., Matita, T., & Luus-Powell, W. (2025). Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa. Water, 17(15), 2200. https://doi.org/10.3390/w17152200