Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Hyperspectral Inversion Model
2.4. Upscaling Technique Using Spectral Analysis
3. Results
3.1. Generating Random Chl- Fields
3.2. Inversion Algorithms Designed from Generated Chl- Fields
3.3. Validation of Selected Inversion Models
3.4. Chlorophyll- Mapping in the Kaštela Bay
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
HS | hyperspectral |
RMSE | root mean square error |
Chl- | Chlorophyll- |
CDOM | colored dissolved organic matter |
NDCI | Normalized Difference Chlorophyll Index |
ESA | European Space Agency |
References
- Lavigne, H.; Zande, D.; Ruddick, K.; Santos, J.; Gohin, F.; Brotas, V.; Kratzer, S. Quality-Control Tests for OC4, OC5 and NIR-Red Satellite Chlorophyll-a Algorithms Applied to Coastal Waters. Remote Sens. Environ. 2021, 255, 112237. [Google Scholar] [CrossRef]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.; Chuprin, A. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef] [PubMed]
- Kurylyk, B.L.; Smith, K.A. Stuck in the middle: Thermal regimes of coastal lagoons and estuaries in a warming world. Environ. Res. Lett. 2023, 18, 61003. [Google Scholar] [CrossRef]
- Callejas, I. Monitoring coastal water quality with satellite data. Nat. Rev. Earth Environ. 2022, 3, 553–556. [Google Scholar] [CrossRef]
- Feng, I.; Chuanmin Hu, C.; Li, J. Can MODIS Land reflectance Products be Used for Estuarine and Inland Waters. Water Resour. Res. 2018, 54, 3583–3601. [Google Scholar] [CrossRef]
- Jang, W.; Kim, J.; Kim, J.H.; Shin, J.K.; Chon, K.; Kang, E.T.; Park, Y.; Kim, S. Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sens. 2024, 16, 315. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mériaux, X. Optical Classification of Contrasted CoastalWaters. Remote Sens. Environ. 2012, 123, 306–323. [Google Scholar] [CrossRef]
- Ibrahim, A.; Franz, B.; Ahmad, Z.; Healy, R.; Knobelspiesse, K.; Gao, B.-C.; Proctor, C.; Zhai, P.-W. Atmospheric correction for hyperspectral ocean color retrieval with application to the hyperspectral imager for the Coastal Ocean (HICO). Remote Sens. Environ. 2018, 204, 60–75. [Google Scholar] [CrossRef]
- O’Shea, R.E.; Pahlevan, N.; Smith, B.; Bresciani, M.; Egerton, T.; Giardino, C.; Li, L.; Moore, T.; Ruiz-Verdu, A.; Ruberg, S.; et al. Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery. Remote Sens. Environ. 2021, 266, 112693. [Google Scholar] [CrossRef]
- Ryan, E.O.; Pahlevan, N.; Smith, B.; Boss, E.; Gurlin, D.; Alikas, K.; Kangro, K.; Kudela, R.M.; Vaiciute, D. A hyperspectral inversion framework for estimating absorbing inherent optical properties and biogeochemical parameters in inland and coastal waters. Remote Sens. Environ. 2023, 225, 113706. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Li, X.; Huang, Y.; Zhang, L.; Zhu, Z.; Sun, X.; Lan, Z.; Guo, W. Hyperspectral remote sensing technology for water quality monitoring: Knowledge graph analysis and Frontier trend. Front. Environ. Sci. 2023, 11, 1133325. [Google Scholar] [CrossRef]
- Jeong, B.; Lee, S.; Heo, J.; Lee, J.; Lee, M.-J. Deep Learning-Based Retrieval of Chlorophyll-a in Lakes Using Sentinel-1 and Sentinel-2 Satellite Imagery. Water 2025, 17, 1718. [Google Scholar] [CrossRef]
- Chusnah, W.N.; Chu, H.-J.; Jaelani, L.M. Machine-learning-estimation of high-spatotemporal resolution chlorophyll-a concentration using multi-satellite imagery. Sustain. Environ. Res. 2023, 33, 11. [Google Scholar] [CrossRef]
- Assaf, M.N.; Abdelal, Q.; Hussein, N.M.; Halaweh, G.; Alzubaldi, A.J. Water quality monitoring and management: Integration of machine learning algorithms and Sentinel-2 images for the estimation of Chlorophyll-a. Model. Earth Syst. Environ. 2025, 11, 348. [Google Scholar] [CrossRef]
- Loisel, H.; Vantrepotte, V.; Ouillon, S.; Ngoc, D.D.; Herrmann, M.; Tran, V.; Mériaux, X.; Dessailly, D.; Jamet, C.; Duhaut, T.; et al. Assessment and Analysis of the Chlorophyll-a Concentration Variability over the Vietnamese CoastalWaters from the MERIS Ocean Color Sensor (2002–2012). Remote Sens. Environ. 2017, 190, 217–232. [Google Scholar] [CrossRef]
- Defoin-Platel, M.; Chami, M. How ambiguous is the inverse problem of ocean color in coastal waters? J. Geophys. Res. 2007, 112, C03004. [Google Scholar] [CrossRef]
- Pasarić, M.; Orlić, M. Meteorological forcing of the Adriatic: Present vs. projected climate conditions. Geofizika 2004, 21, 69–87. [Google Scholar]
- Andricevic, R.; Kekez, T.; Vojkovic, M. Trophic status assessment of Central Eastern Adriatic Sea using water quality variables and loading capacity concept for estuaries. Mar. Pollut. Bull. 2021, 173 Pt B, 113126. [Google Scholar] [CrossRef]
- Marasovic, I.; Pucher-Petkovic, T. Eutrophication impact on the species composition in a natural phytoplankton community. Acta Adriat. 1991, 32, 719–729. [Google Scholar]
- Andricevic, R. Ecological quality assessment under uncertainty for transitional and coastal waters: Central Easter Adriatic Sea study. Ecol. Indic. 2022, 138, 1735–1746. [Google Scholar] [CrossRef]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Montorio Llovería, R. Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Dedman, S.; Rosso, M.; Zhu, J.; Yang, J.; Xia, Y.; Tian, Y.; Zhang, G.; Wang, J. UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Sci. Total Environ. 2022, 838, 155939. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, K.A.; Bialik, R.J.; Osinska, M.; Figielski, M. Investigation of Sediment-Rich glacial meltwater plumes using a high-resolution multispectral sensor mounted on an unmanned aerial vehicle. Water 2019, 11, 2405. [Google Scholar] [CrossRef]
- Medvedev, A.; Telnova, N.; Alekseenko, N.; Koshkarev, A.; Kuznetchenko, P.; Asmaryan, S.; Narykov, A. UAV-derived data application for environmental monitoring of the coastal area of Lake Sevan, Armenia with a changing water level. Remote Sens. 2020, 12, 3821. [Google Scholar] [CrossRef]
- Galešić Divić, M.; Kvesić Ivanković, M.; Divić, V.; Kišević, M.; Panić, M.; Lugonja, P.; Crnojević, V.; Andričević, R. Estimation of Water Quality Parameters in Oligotrophic Coastal Waters Using Uncrewed-Aerial-Vehicle Obtained Hyperspectral Data. J. Mar. Sci. Eng. 2023, 11, 2026. [Google Scholar] [CrossRef]
- Vanmarcke, E. Random Fields: Analysis and Synthesis; Revised and Expanded New Edition; World Scientific Publishing: Singapore, 2010. [Google Scholar]
- Purvanve, T.D.; Andricevic, R. Geoelectric characterization of the hydraulic conductivity field and its spatial structure at variable scales. Water Resour. Res. 2000, 36, 2915–2924. [Google Scholar] [CrossRef]
- Talavera, L.; Domínguez-Gómez, J.A.; Navarro, N.; Rodríguez-Santalla, I. Analysing Spatiotemporal Variability of Chlorophyll-a Concentration and Water Surface Temperature in Coastal Lagoons of the Ebro Delta (NW Mediterranean Sea, Spain). J. Mar. Sci. Eng. 2024, 12, 941. [Google Scholar] [CrossRef]
- Tran, M.D.; Vantrepotte, V.; Loisel, H.; Oliveira, E.N.; Tran, K.T.; Jorge, D.; Mériaux, X.; Paranhos, R. Band Ratios Combination for Estimating Chlorophyll-a from Sentinel-2 and Sentinel-3 in Coastal Waters. Remote Sens. 2023, 15, 1653. [Google Scholar] [CrossRef]
- Zhanga, W.; Huanga, R.; Dengc, S.; Wanga, W.; Wanga, Y. Spatio-temporal distribution of sea surface chlorophyll-a in coral reefs of the South China Sea over the past decade based on Landsat-8 OLI images. Sci. Total Environ. 2024, 935, 173433. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- European Commission. Directive 2008/56/EC of the European parliament and of the council. Off. J. Eur. Union 2008, 164, 19–40. [Google Scholar]
- Santos, J.I.; Vidal, T.; Goncalves, F.J.; Castro, B.B.; Pereira, J.L. Challenges to water quality assessment in Europe; Is there scope for improvement of the current Water Framework Directive bioassessment scheme in rivers? Ecol. Indic. 2021, 121, 107030. [Google Scholar] [CrossRef]
Inversion models | Exponential | Logarithmic | Linear | Polynomial | |
Y = a·Exp[b·X] | Y = a + b·Log[X] | Y = a + b·X | Y = a + b·X + c·X2 | ||
Band combinations | B2/B3 | B3/B4 | B3/(B2 + B4) | NDCI = |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andričević, R. Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters. Water 2025, 17, 2356. https://doi.org/10.3390/w17152356
Andričević R. Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters. Water. 2025; 17(15):2356. https://doi.org/10.3390/w17152356
Chicago/Turabian StyleAndričević, Roko. 2025. "Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters" Water 17, no. 15: 2356. https://doi.org/10.3390/w17152356
APA StyleAndričević, R. (2025). Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters. Water, 17(15), 2356. https://doi.org/10.3390/w17152356