A Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution
Abstract
1. Introduction
2. Development of TDE-ISCW
2.1. Disturbance Model of CO2 Metabolic System on WPE System
2.2. Disturbance Model of WPE Metabolic System on CO2 System
3. Case Study and Data Source
4. Results and Discussion
4.1. Identifying Key Industrial Sectors in CO2 and WPE Metabolic Systems
4.2. Analysis of Disturbance Induced by CO2 System on WPE System
4.3. Analysis of Disturbance Induced by WPE System on CO2 System
4.4. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hiloidhari, M.; Sharno, M.A.; Baruah, D.C.; Bezbaruah, A.N. Green and Sustainable Biomass Supply Chain for Environmental, Social and Economic Benefits. Biomass Bioenergy 2023, 175, 106893. [Google Scholar] [CrossRef]
- Deng, H.-M.; Wang, C.; Cai, W.-J.; Liu, Y.; Zhang, L.-X. Managing the Water-Energy-Food Nexus in China by Adjusting Critical Final Demands and Supply Chains: An Input-Output Analysis. Sci. Total Environ. 2020, 720, 137635. [Google Scholar] [CrossRef] [PubMed]
- Kiss, K.; Ruszkai, C.; Takács-György, K. Examination of Short Supply Chains Based on Circular Economy and Sustainability Aspects. Resources 2019, 8, 161. [Google Scholar] [CrossRef]
- Holappa, L. A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry. Metals 2020, 10, 1117. [Google Scholar] [CrossRef]
- Napp, T.A.; Gambhir, A.; Hills, T.P.; Florin, N.; Fennell, P. A Review of the Technologies, Economics and Policy Instruments for Decarbonising Energy-Intensive Manufacturing Industries. Renew. Sustain. Energy Rev. 2014, 30, 616–640. [Google Scholar] [CrossRef]
- Moghimi Dehkordi, M.; Pournuroz Nodeh, Z.; Soleimani Dehkordi, K.; Salmanvandi, H.; Rasouli Khorjestan, R.; Ghaffarzadeh, M. Soil, Air, and Water Pollution from Mining and Industrial Activities: Sources of Pollution, Environmental Impacts, and Prevention and Control Methods. Res. Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Jiang, S.; Li, E.; Wei, Y.; Yan, X.; He, R.; Banny, E.T.; Xin, Z. Measurement and Influencing Factors of Carbon Emission Efficiency Based on the Dual Perspectives of Water Pollution and Carbon Neutrality. Sci. Total Environ. 2024, 911, 168662. [Google Scholar] [CrossRef]
- Feng, Y.; Cheng, J.; Deng, Y. Study on Agricultural Water Resource Utilization Efficiency under the Constraint of Carbon Emission and Water Pollution. Environ. Res. 2024, 253, 119142. [Google Scholar] [CrossRef]
- Jamil, M.A.; Mustofa, R.; Hossain, N.U.I.; Rahman, S.M.A.; Chowdhury, S. A Structural Equation Modeling Framework for Exploring the Industry 5.0 and Sustainable Supply Chain Determinants. Supply Chain Anal. 2024, 6, 100060. [Google Scholar] [CrossRef]
- Alkaraan, F.; Elmarzouky, M.; Lopes de Sousa Jabbour, A.B.; Chiappetta Jabbour, C.J.; Gulko, N. Maximising Sustainable Performance: Integrating Servitisation Innovation into Green Sustainable Supply Chain Management under the Influence of Governance and Industry 4.0. J. Bus. Res. 2025, 186, 115029. [Google Scholar] [CrossRef]
- Raut, S.A.; Marchi, L.; Gaspari, J. A System Thinking Approach to Circular-Based Strategies for Deep Energy Renovation: A Systematic Review. Energies 2025, 18, 2494. [Google Scholar] [CrossRef]
- Tian, W.; An, H.; Li, X.; Li, H.; Quan, K.; Lu, X.; Bai, H. CO2 Accounting Model and Carbon Reduction Analysis of Iron and Steel Plants Based on Intra- and Inter-Process Carbon Metabolism. J. Clean. Prod. 2022, 360, 132190. [Google Scholar] [CrossRef]
- Rocco, M.V.; Forcada Ferrer, R.J.; Colombo, E. Understanding the Energy Metabolism of World Economies through the Joint Use of Production- and Consumption-Based Energy Accountings. Appl. Energy 2018, 211, 590–603. [Google Scholar] [CrossRef]
- Yin, L.; Sharifi, A.; Liqiao, H.; Jinyu, C. Urban Carbon Accounting: An Overview. Urban Clim. 2022, 44, 101195. [Google Scholar] [CrossRef]
- Landa-Cansigno, O.; Behzadian, K.; Davila-Cano, D.I.; Campos, L.C. Performance Assessment of Water Reuse Strategies Using Integrated Framework of Urban Water Metabolism and Water-Energy-Pollution Nexus. Environ. Sci. Pollut. Res. 2020, 27, 4582–4597. [Google Scholar] [CrossRef]
- Huang, C.-L.; Vause, J.; Ma, H.-W.; Yu, C.-P. Urban Water Metabolism Efficiency Assessment: Integrated Analysis of Available and Virtual Water. Sci. Total Environ. 2013, 452–453, 19–27. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, G.; Liu, L.; Niu, G.; Li, J.; McBean, E. Ecological Network Analysis of an Urban Water Metabolic System Based on Input-Output Model: A Case Study of Guangdong, China. Sci. Total Environ. 2019, 670, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Lin, F.; Zhao, G.; Chen, J.; Zhang, Z.; Zhang, H. Accurate Carbon Accounting Based on Industrial Metabolism for the Lean Management of Carbon Emission. Energy Rep. 2023, 9, 3872–3880. [Google Scholar] [CrossRef]
- Tian, G.; Xia, Q.; Wu, Z.; Fu, T. Ecological Network Analysis of Industrial Wastes Metabolism Based on Input-Output Model for Jiangsu, China. Waste Manag. 2022, 143, 23–34. [Google Scholar] [CrossRef]
- Gao, X.; Zeng, Y.; Ji, F.; Jiang, L. Ecological Network Analysis for Water Pollution Metabolism in Urban Water Use System: Case Study of Fuzhou, China. Water 2021, 13, 834. [Google Scholar] [CrossRef]
- Liddle, B. Consumption-Based Accounting and the Trade-Carbon Emissions Nexus. Energy Econ. 2018, 69, 71–78. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Q.; Tian, X.; Li, H. Environmental Inequity Hidden in Skewed Water Pollutant—Value Flows via Interregional Trade in China. J. Clean. Prod. 2021, 290, 125698. [Google Scholar] [CrossRef]
- Wu, B.; Zeng, W.; Chen, H.; Zhao, Y. Grey Water Footprint Combined with Ecological Network Analysis for Assessing Regional Water Quality Metabolism. J. Clean. Prod. 2016, 112, 3138–3151. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway. Environ. Sci. Technol. 2017, 51, 7560–7571. [Google Scholar] [CrossRef]
- Sun, H.; Ni, S.; Zhao, T.; Huang, C. The Transfer and Driving Factors of Industrial Embodied Wastewater in China’s Interprovincial Trade. J. Clean. Prod. 2021, 317, 128298. [Google Scholar] [CrossRef]
- Han, D.; Huang, G.; Liu, L.; Zhai, M.; Gao, S. Multi-Regional Industrial Wastewater Metabolism Analysis for the Yangtze River Economic Belt, China. Environ. Pollut. 2021, 284, 117118. [Google Scholar] [CrossRef]
- Chen, S.; Long, H.; Fath, B.D.; Chen, B. Global Urban Carbon Networks: Linking Inventory to Modeling. Environ. Sci. Technol. 2020, 54, 5790–5801. [Google Scholar] [CrossRef]
- Xia, L.; Wei, J.; Wang, R.; Chen, L.; Zhang, Y.; Yang, Z. Exploring Potential Ways to Reduce the Carbon Emission Gap in an Urban Metabolic System: A Network Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5793. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Liu, T.; Zhang, J.; Guo, H.; Pu, X.; Lu, L.; Qin, C. Prediction and Analysis of Metabolic Mechanism for Regional Water System from the Perspective of Quantity-Quality Collaborative Control——A Case Study of Zhejiang Province, China. Environ. Sustain. Indic. 2025, 25, 100571. [Google Scholar] [CrossRef]
- Fath, B.D.; Strelkovskii, N.; Wang, S.; Chen, B. Assessing Urban Carbon Metabolism Using Network Analysis across Chinese and European Cities. Clean. Prod. Lett. 2023, 4, 100042. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global Effect of Urban Sprawl, Industrialization, Trade and Economic Development on Carbon Dioxide Emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Edo, G.I.; Itoje-akpokiniovo, L.O.; Obasohan, P.; Ikpekoro, V.O.; Samuel, P.O.; Jikah, A.N.; Nosu, L.C.; Ekokotu, H.A.; Ugbune, U.; Oghroro, E.E.A.; et al. Impact of Environmental Pollution from Human Activities on Water, Air Quality and Climate Change. Ecol. Front. 2024, 44, 874–889. [Google Scholar] [CrossRef]
- Nakamura, S.; Kondo, Y. Input-Output Analysis of Waste Management. J. Ind. Ecol. 2002, 6, 39–63. [Google Scholar] [CrossRef]
- Towa, E.; Zeller, V.; Achten, W.M.J. Input-Output Models and Waste Management Analysis: A Critical Review. J. Clean. Prod. 2020, 249, 119359. [Google Scholar] [CrossRef]
- Di Noia, J.; Caiani, A.; Cesarini, L.; Arosio, M.; Monteleone, B. A High Resolution Input–Output Model to Assess the Economic Impact of Floods. J. Econ. Behav. Organ. 2025, 230, 106896. [Google Scholar] [CrossRef]
- Ali, Y.; Pretaroli, R.; Socci, C.; Severini, F. Carbon and Water Footprint Accounts of Italy: A Multi-Region Input-Output Approach. Renew. Sustain. Energy Rev. 2018, 81, 1813–1824. [Google Scholar] [CrossRef]
- Daniels, P.L.; Lenzen, M.; Kenway, S.J. The Ins and Outs of Water Use—A Review of Multi-Region Input–Output Analysis and Water Footprints for Regional Sustainability Analysis and Policy. Econ. Syst. Res. 2011, 23, 353–370. [Google Scholar] [CrossRef]
- Faridzad, A. Applying Machine Learning to Input–Output Analysis: A New Perspective on Identifying Key Australian Industries. J. Econ. Struct. 2025, 14, 9. [Google Scholar] [CrossRef]
- Yamada, M. Linking Adjacent Prefectures’ Multi-Regional Input–Output Tables. In Multi-Regional Input–Output Analysis of the Japanese Economy; Springer Nature: Singapore, 2024; pp. 151–179. [Google Scholar]
- Lam, K.L.; Liu, G.; Motelica-Wagenaar, A.M.; van der Hoek, J.P. Toward Carbon-Neutral Water Systems: Insights from Global Cities. Engineering 2022, 14, 77–85. [Google Scholar] [CrossRef]
- Roddy, D.J. Development of a CO2 Network for Industrial Emissions. Appl. Energy 2012, 91, 459–465. [Google Scholar] [CrossRef]
- Yuan, R.; Behrens, P.; Rodrigues, J.F.D. The Evolution of Inter-Sectoral Linkages in China’s Energy-Related CO2 Emissions from 1997 to 2012. Energy Econ. 2018, 69, 404–417. [Google Scholar] [CrossRef]
- Kim, S.H.; Yoon, S.-G.; Chae, S.H.; Park, S. Economic and Environmental Optimization of a Multi-Site Utility Network for an Industrial Complex. J. Environ. Manag. 2010, 91, 690–705. [Google Scholar] [CrossRef]
- Liu, G.; Gao, Y.; Hao, Y. The Network Utility Analysis of “Cancer Villages” and Surrounding Big Cities in Huaihe River Basin. Energy Procedia 2016, 88, 112–118. [Google Scholar] [CrossRef]
- Tuominen, L.K.; Whipple, S.J.; Patten, B.C.; Karatas, Z.Y.; Kazanci, C. Contribution of Throughflows to the Ecological Interpretation of Integral Network Utility. Ecol. Modell. 2014, 293, 187–201. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Yang, Z.; Li, Y.; Liu, G.; Su, M.; Yin, X. Urban Energy Flow Processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) Urban Agglomeration: Combining Multi-Regional Input–Output Tables with Ecological Network Analysis. J. Clean. Prod. 2016, 114, 243–256. [Google Scholar] [CrossRef]
Sector Abbreviation | Sector Description |
---|---|
MWC | Coal mining and selection products; oil and gas extraction and processing |
MPM | Metal ore mining, selection, and processing |
MOO | Mining and selection of non-metallic minerals and other minerals |
FTO | Food and tobacco |
TEI | Textile industry |
PTP | Wood processing products and furniture/paper printing and cultural, educational, and sports |
PPC | Petroleum, coking products, and nuclear fuel processing |
CHE | Chemical products |
MNM | Processing of non-metallic mineral products |
MEI | Metal smelting and rolling processing |
ADM | Advanced equipment manufacturing |
OTM | Other manufacturing industries |
MET | Materials and energy transformation and conversion supply |
CO2 System Emission Reduction Plan | WPE System Emission Reduction Plan | |
---|---|---|
Key sectors | MOOCO2→WPE | MPMWPE→CO2 |
FTOCO2→WPE | FTOWPE→CO2 | |
MNMCO2→WPE | OTHWPE→CO2 |
CO2 Metabolic System | WPE Metabolic System | |||||
---|---|---|---|---|---|---|
Symbiotic Relationship | Exploitative Relationship | Competitive Relationship | Symbiotic Relationship | Exploitative Relationship | Competitive Relationship | |
MWC | 5 | 8 | 0 | 3 | 7 | 3 |
MPM | 3 | 5 | 5 | 2 | 6 | 5 |
MOO | 1 | 5 | 7 | 1 | 9 | 3 |
FTO | 1 | 5 | 7 | 1 | 8 | 4 |
TEI | 2 | 5 | 6 | 2 | 9 | 2 |
PTP | 1 | 8 | 4 | 1 | 10 | 2 |
PPC | 2 | 6 | 5 | 2 | 8 | 3 |
CHE | 1 | 8 | 4 | 1 | 12 | 0 |
MNM | 1 | 5 | 7 | 1 | 11 | 1 |
MEI | 1 | 6 | 6 | 1 | 10 | 2 |
ADM | 4 | 5 | 4 | 6 | 7 | 0 |
OTM | 2 | 5 | 6 | 2 | 7 | 4 |
MET | 1 | 11 | 1 | 2 | 9 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wu, L.; Lin, X.; Yang, X.; Gong, X.; Miao, Y.; Zhai, M.; Niu, Y.; Luo, M.; Jiang, X.; et al. A Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution. Water 2025, 17, 2473. https://doi.org/10.3390/w17162473
Yang Y, Wu L, Lin X, Yang X, Gong X, Miao Y, Zhai M, Niu Y, Luo M, Jiang X, et al. A Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution. Water. 2025; 17(16):2473. https://doi.org/10.3390/w17162473
Chicago/Turabian StyleYang, Yueqing, Liangliang Wu, Xingjie Lin, Xiaosong Yang, Xuegang Gong, Yu Miao, Mengyu Zhai, Yong Niu, Mingke Luo, Xia Jiang, and et al. 2025. "A Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution" Water 17, no. 16: 2473. https://doi.org/10.3390/w17162473
APA StyleYang, Y., Wu, L., Lin, X., Yang, X., Gong, X., Miao, Y., Zhai, M., Niu, Y., Luo, M., Jiang, X., & Wang, J. (2025). A Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution. Water, 17(16), 2473. https://doi.org/10.3390/w17162473