Modeling and Monitoring of Drawdown Flushing and Dredging Toward Sustainable Sluicing in a Wide Philippine Reservoir
Abstract
1. Introduction
- Monitoring of drawdown flushing based on a single test flushing event.
- Preparation of a calibration dataset including laboratory analyses (e.g., grain size distribution, critical shear stress test).
- Calibration of a 3D numerical reservoir model and a 1D model for the river downstream, both incorporating cohesive sediment behavior.
- Modeling scenarios to develop a continuous flushing channel in the shallow and wide Pulangi IV reservoir enabling sustainable sediment routing through drawdown sluicing in the future.
- Modelling the downstream impacts of drawdown flushing on sediment transport and morphology.
- Analyzing the scouring and transport of dredged sediments from the reservoir, which were dumped in the river downstream of the dam.
2. Materials and Methods
2.1. Pulangi IV Case Study (Mindanao, Philippines)
2.1.1. Scenarios
2.1.2. Topography
2.2. Monitoring and Laboratory Analyses
2.2.1. Field Measurement Campaign 2020 (Test Flushing Event)
2.2.2. Laboratory Analyses
2.3. Numerical Methods
2.3.1. Three-Dimensional Hydrodynamic Model (RSim-3D), 2D Sediment Transport Model (iSed)
2.3.2. One-Dimensional Hydrodynamic and Sediment Transport Modeling by HEC-RAS
2.4. Numerical Model Implementation
2.4.1. Reservoir Model (RSim-3D, iSed)
2.4.2. One-Dimensional Sediment Transport Model of Pulangi River Below the Dam (HEC-RAS)
- Selection of sediment transport formulas based on model assumptions and numerical instabilities (sensitivity analysis),
- Selection of the sorting method (plausibility check and dismissal of unsuitable methods), and
- Selection of the fall velocity formula (sensitivity analysis).
3. Results and Discussion
3.1. Monitoring
3.1.1. Sediment Analysis
3.1.2. Discharge, Water Level and SSC
3.2. Simulation of Pulangi IV Reservoir
3.2.1. Model Calibration and Scenarios
3.2.2. Sensitivity Analysis
3.3. Pulangi River Downstream of Reservoir
3.3.1. Calibration and Sensitivity Analysis of the Hydrodynamic Model
3.3.2. Plausibility Check and Sensitivity Analysis of the Sediment Transport Model
3.3.3. Scouring of Dredged Material from a Containment Structure (Scenario D)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NPC | National Power Cooperation |
RCP | Representative concentration pathway |
SSC | Suspended sediment concentration |
LLO | Low-level outlets |
BS | Bottom sluice gate |
HW | Headworks |
OL | Operation level |
SP | Surge pond |
PH | Power house |
C | Confluence |
BB | Busco bridge |
G | Gorge |
CB | Crystal bridge |
DEM | Digital Elevation Model |
TIN | Triangulated Irregular Network |
NSE | Nash-Sutcliffe Efficiency |
SSE | Sum of Square Errors |
RC | Rating curve |
LS | Long section |
References
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Annandale, G.W.; Randle, T.J.; Langendoen, E.J.; Hotchkiss, R.H. Reservoir sedimentation management: A sustainable development challenge. Hydrolink 2018, 3, 72–75. [Google Scholar]
- International Commission on Large Dams (ICOLD). Sedimentation and Sustainable Use of Reservoirs and River Systems [Draft Bulletin 147]. International Commission on Large Dams. 2009. Available online: https://www.icoldchile.cl/boletines/147.pdf (accessed on 28 March 2025).
- Hauer, C.; Wagner, B.; Aigner, J.; Holzapfel, P.; Flödl, P.; Liedermann, M.; Tritthart, M.; Sindelar, C.; Pulg, U.; Klösch, M.; et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sustain. Energy Rev. 2018, 98, 40–55. [Google Scholar] [CrossRef]
- Randle, T.J.; Morris, G.L.; Tullos, D.D.; Weirich, F.H.; Kondolf, G.M.; Moriasi, D.N.; Annandale, G.W.; Fripp, J.; Minear, J.T.; Wegner, D.L. Sustaining United States reservoir storage capacity: Need for a new paradigm. J. Hydrol. 2021, 602, 126686. [Google Scholar] [CrossRef]
- Holubova, K.; Capekova, Z.; Szolgay, J. Impact of Hydropower Schemes on Bedload Regime and Channel Morphology of the Danube River. In Proceedings of the Second International Conference on Fluvial Hydraulics, Naples, Italy, 23–25 June 2004. [Google Scholar]
- Kondolf, G.M. PROFILE: Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Hauer, C.; Holzapfel, P.; Flödl, P.; Wagner, B.; Graf, W.; Leitner, P.; Haimann, M.; Holzer, G.; Haun, S.; Habersack, H.; et al. Controlled Reservoir Drawdown—Challenges for Sediment Management and Integrative Monitoring: An Austrian Case Study—Part B: Local Scale. Water 2020, 12, 1055. [Google Scholar] [CrossRef]
- Espa, P.; Batalla, R.J.; Brignoli, M.L.; Crosa, G.; Gentili, G.; Quadroni, S.; Bryhn, A.C. Tackling reservoir siltation by controlled sediment flushing: Impact on downstream fauna and related management issues. PLoS ONE 2019, 14, e0218822. [Google Scholar] [CrossRef]
- Kemp, P.; Sear, D.; Collins, A.; Naden, P.; Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 2011, 25, 1800–1821. [Google Scholar] [CrossRef]
- Sear, D.A.; Frostick, L.B.; Rollinson, G.; Lisle, T.E. The significance and mechanics of fine-sediment infiltration and accumulation in gravel spawning beds. In Salmonid Spawning Habitat in Rivers: Physical Controls, Biological Responses, and Approaches to Remediation, Proceedings of the Symposium 65, Bethesda, MD, USA, 11–13 September 2008; Sear, D.A., DeVries, P., Eds.; American Fisheries Society: Bethesda, MD, USA, 2008; pp. 149–174. [Google Scholar]
- Okumura, H.; Sumi, T. Reservoir Sedimentation Management in Hydropower Plant Regarding Flood Risk and Loss of Power Generation. In Proceedings of the International Symposium on Dams for a Changing World, the 80th Annual Meeting of ICOLD, Kyoto, Japan, 1–6 June 2013. [Google Scholar]
- Morris, G.L. Classification of Management Alternatives to Combat Reservoir Sedimentation. Water 2020, 12, 861. [Google Scholar] [CrossRef]
- Dufresne, M.; Dewals, B.; Erpicum, S.; Archambeau, P.; Pirotton, M. Flow patterns and sediment deposition in rectangular shallow reservoirs. Water Environ. J. 2012, 26, 504–510. [Google Scholar] [CrossRef]
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower; World Bank Group: Washington, DC, USA, 2016; ISBN 978-1-4648-0838-8. [Google Scholar]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook; McGraw-Hill Book Co.: New York, NY, USA, 1998. [Google Scholar]
- Yasarer, L.M.W.; Sturm, B.S.M. Potential impacts of climate change on reservoir services and management approaches. Lake Reserv. Manag. 2016, 32, 13–26. [Google Scholar] [CrossRef]
- Sirikaew, U.; Seeboonruang, U.; Tanachaichoksirikun, P.; Wattanasetpong, J.; Chulkaivalsucharit, V.; Chen, W. Impact of Climate Change on Soil Erosion in the Lam Phra Phloeng Watershed. Water 2020, 12, 3527. [Google Scholar] [CrossRef]
- Mouris, K.; Schwindt, S.; Pesci, M.H.; Wieprecht, S.; Haun, S. An interdisciplinary model chain quantifies the footprint of global change on reservoir sedimentation. Sci. Rep. 2023, 13, 20160. [Google Scholar] [CrossRef]
- Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H. Hydropower Technologies. In Encyclopedia of Sustainable Technologies, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 1–4. [Google Scholar] [CrossRef]
- Anderson, D.; Moggridge, H.; Warren, P.; Shucksmith, J. The impacts of “run-of-river” hydropower on the physical and ecological condition of rivers. Water Environ. J. 2015, 29, 268–276. [Google Scholar] [CrossRef]
- National Power Corporation. Pulangi IV Hydroelectric Plant. Available online: https://www.napocor.gov.ph/?s=Pulangi+IV (accessed on 9 May 2025).
- Eftymiou, N. (The World Bank, Washington, DC, USA); Habersack, H. (BOKU University, Vienna, Austria). Sediment Management Study for Pulangi IV Reservoir. Technical Report on Rapid Screening of Effective Sediment Management Strategies. The World Bank: Washington, DC, USA, 2020. (Unpublished work). [Google Scholar]
- Republic of the Philippines; National Power Corporation. Pulangi River Development, Maramag Hydroelectric Project, Feasibility Report, Volume III, Appendix A: Hydrology; Sofrelec: Paris, France, 1978.
- Brune, G.M. Trap Efficiency of Reservoirs. Trans. Am. Geophys. Union. 1953, 34, 407–418. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Sumi, T.; Kantoush, S.; Esmaeili, T.; Ock, G. Reservoir sediment flushing and replenishment below dams: Insights from Japanese case studies. In Gravel-Bed Rivers; Tsutsumi, D., Laronne, J.B., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 385–414. [Google Scholar] [CrossRef]
- Wagner, B.; Habersack, H.; Hauer, C.; Schoder, A. Sedimentmanagement bei Wasserkraftwerken. Wasserkraft 2013, 39, 10–11. [Google Scholar]
- Schleiss, A.; Oehy, C. Verlandung von Stauseen und Nachhaltigkeit. Wasser. Energ. Luft. 2002, 94, 227–234. [Google Scholar] [CrossRef]
- Panondi, W.; Izumi, N. Climate Change Impact on the Hydrologic Regimes and Sediment Yield of Pulangi River Basin (PRB) for Watershed Sustainability. Sustainability 2021, 13, 9041. [Google Scholar] [CrossRef]
- Lee, C.; Foster, G. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling: Continuous turbidity to assess reservoir sedimentation. Hydrol. Process. 2013, 27, 1426–1439. [Google Scholar] [CrossRef]
- CIGB; ICOLD. Sedimentation and Sustainable Use of Reservoirs and River Systems [Sédimentation et Utilisation Durable des Réservoirs et Systèmes Fluviaux]; CRC Press; Balkema, Taylor & Francis Group: Leiden, The Netherlands, 2007; ISBN 978-1-032-32727-3. [Google Scholar]
- Sumi, T. Evaluation of Efficiency of Reservoir Sediment Flushing in Kurobe River. In Proceedings of the 4th International Conference on Scour and Erosion (ICSE-4), Tokyo, Japan, 5–7 November 2008; pp. 608–613. [Google Scholar]
- Lai, Y.G.; Huang, J.; Greimann, B.P. Hydraulic flushing of sediment in reservoirs: Best practices of numerical modeling. Fluids 2024, 9, 38. [Google Scholar] [CrossRef]
- Kantoush, S.A.; Schleiss, A.J. Channel formation during flushing of large shallow reservoirs with different geometries. Environ. Technol. 2009, 30, 855–863. [Google Scholar] [CrossRef]
- Efthymiou, N.P.; Palt, S.; Annandale, G.W.; Karki, P. Reservoir Conservation Model: RESCON 2 Beta, Economic and Engineering Evaluation of Alternative Sediment Management Strategies; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Haun, S.; Olsen, N.R.B. Three-dimensional numerical modelling of the flushing process of the Kali Gandaki hydropower reservoir. Lakes Reserv. Res. Manag. 2012, 17, 25–33. [Google Scholar] [CrossRef]
- Olsen, N.R.B.; Haun, S. Numerical Modelling of Bank Failures during Reservoir Draw-Down. In Proceedings of the River Flow 2018—E3S Web of Conferences, Les Ulis, France, 5–8 September 2018; EDP Sciences: Les Ulis, France, 2018; Volume 40, p. 03001. [Google Scholar] [CrossRef]
- Saam, L.; Mouris, K.; Wieprecht, S.; Haun, S. Three-dimensional numerical modelling of reservoir flushing to obtain long-term sediment equilibrium. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar]
- Esmaeili, T.; Sumi, T.; Kantoush, S.A.; Kubota, Y.; Haun, S. Numerical study on flushing channel evolution, case study of Dashidaira reservoir, Kurobe River. J. Jpn. Soc. Civ. Eng. 2015, 71, 115–120. [Google Scholar] [CrossRef]
- Esmaeili, T.; Sumi, T.; Kantoush, S.A.; Kubota, Y.; Haun, S.; Ruther, N. Three-dimensional numerical study of free-flow sediment flushing to increase the flushing efficiency: A case-study reservoir in Japan. Water 2017, 9, 900. [Google Scholar] [CrossRef]
- U.S. Department of the Interior. Cohesive Sediment Transport. In Erosion and Sedimentation Manual; U.S. Department of the Interior: Denver, CO, USA, 2006. [Google Scholar]
- Tabios, G.Q., III. Reservoir Sedimentation Studies. In Water Resources Systems of the Philippines: Modeling Studies; Singh, V.P., Ed.; World Water Resources; Springer: Cham, Switzerland, 2020; Volume 4, pp. 165–210. ISBN 978-3-030-25400-1. [Google Scholar]
- Zhao, D.H.; Shen, H.W.; Tabios, G.Q.; Lai, J.S.; Tan, W.Y. Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins. J. Hydraul. Eng. 1994, 120, 863–883. [Google Scholar] [CrossRef]
- Glas, M.; Pessenlehner, S.; Lichtneger, P.; Tritthart, M.; Morris, G.L.; Tabios, G.; Efthymiou, N.; Karki, P.; Habersack, H. Physical and Numerical Sediment Modelling at the Pulangi Reservoir. In Proceedings of the Vienna Water Conferences, Vienna, Austria, 21–25 August 2023. [Google Scholar]
- Morris, G. (GLM Engineering PSC, San Juan, PR, USA); Efthymiou, N. (The World Bank, Washington, DC, USA); Habersack, H. (BOKU University, Vienna, Austria). Global Sediment Management Study: Sediment Management Study—Pulangi IV Hydropower Reservoir, Mindanao, Philippines. Executive Summary. 2021. (Unpublished work). [Google Scholar]
- Paguntalan, R.B. Water Resources Utilization in the Upper Pulangi River Basin, Bukidnon, Philippines. Ph.D. Thesis, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines, 2003. [Google Scholar]
- CMA Geoservices & Construction Corporation (CMA) (CMA Geoservices & Construction Corporation, Maramag, Bukidnon, Philippines). Final Report on the Engineering Preparatory Works for the Dredging/Desilting of Pulangi IV HE Plant Complex, 2002. (Unpublished work).
- Atkinson, E. (HR Wallingford, Wallingford, UK). The Feasibility of Flushing Sediment from Reservoirs, 1996. (Unpublished work).
- ASF DAAC. ALOS PALSAR Radiometric Terrain Corrected High Resolution, Includes Material JAXA/METI 2007. Available online: https://search.asf.alaska.edu/#/ (accessed on 19 March 2020).
- Herschy, R. The velocity-area method. Flow. Meas. Instrum. 1993, 4, 7–10. [Google Scholar] [CrossRef]
- DVWK. Schwebstoffmessungen, Regeln zur Wasserwirtschaft Nr. 125/1986; Kommissionsvertrieb Verlag Paul Parey: Hamburg/Berlin, Germany, 1986. [Google Scholar]
- DIN 38 409 Part 2. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Summarische Wirkungs- und Stoffkenngrößen (Gruppe H); Bestimmung des Gesamttrockenrückstandes, des Filtrattrockenrückstandes und des Glührückstandes (H 1). Available online: https://www.din.de/de/mitwirken/normenausschuesse/naw/wdc-beuth:din21:1334102 (accessed on 25 February 2020).
- EN ISO 17892-3; Geotechnische Erkundung und Untersuchung—Laborversuche an Bodenproben—Teil 3: Bestimmung der Korndichte. Austrian Standards International: Vienna, Austria, 2016. Available online: https://www.austrian-standards.at/de/shop/onorm-en-iso-17892-3-2016-08-15~p2244129 (accessed on 25 February 2020).
- Lichtneger, P.; Golja, M.; Schobert, J.; Sindelar, C.; Habersack, H.; Hauer, C. Critical Shear Stresses of Reservoir Sediments Determined from Bore Core Samples Using CD-SED Hydraulic Test Channel. BOKU University: Vienna, Austria, 2026; manuscript in preparation. [Google Scholar]
- Lichtneger, P. (The World Bank, Washington, DC, USA); Habersack, H. (BOKU University Vienna, Austria); Morris, G. (GLM Engineering PSC, San Juan, PR, USA); Efthymiou, N. (The World Bank, Washington, DC, USA); Karki, P. (The World Bank, Washington, DC, USA). Global Sediment Management Study: Sediment Management Study—Pulangi IV Hydropower Reservoir, Mindanao, Philippines. Physical Model Report, 2021. (Unpublished work).
- Tritthart, M.; Schober, B.; Habersack, H. Non-Uniformity and Layering in Sediment Transport Modelling 1: Flume Simulations. J. Hydraul. Res. 2011, 49, 325–334. [Google Scholar] [CrossRef]
- Tritthart, M.; Liedermann, M.; Schober, B.; Habersack, H. Non-Uniformity and Layering in Sediment Transport Modelling 2: River Application. J. Hydraul. Res. 2011, 49, 335–344. [Google Scholar] [CrossRef]
- Tritthart, M. Three-dimensional numerical modelling of turbulent river flow using polyhedral finite volumes. In Wiener Mitteilungen; Vienna University of Technology: Vienna, Austria, 2005; Volume 193. [Google Scholar]
- Voronoi, G. Nouvelles Applications des Paramètres Continus à la Théorie des Formes Quadratiques, Deuxième Mémoire, Recherches sur les Paralléloèdres Primitifs. J. Reine Angew. Math. 1908, 134, 198–287. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Tritthart, M.; Gutknecht, D. Three-Dimensional Simulation of Free-Surface Flows Using Polyhedral Finite Volumes. Eng. Appl. Comput. Fluid Mech. 2007, 1, 1–14. [Google Scholar] [CrossRef]
- Tritthart, M.; Gutknecht, D. 3-D Computation of Flood Processes in Sharp River Bends. Proc. Inst. Civ. Eng. Water Manag. 2007, 160, 233–247. [Google Scholar] [CrossRef]
- Glas, M.; Glock, K.; Tritthart, M.; Liedermann, M.; Habersack, H. Hydrodynamic and Morphodynamic Sensitivity of a River’s Main Channel to Groyne Geometry. J. Hydraul. Res. 2018, 56, 714–726. [Google Scholar] [CrossRef]
- Prenner, D. Application of 3D Hydrodynamic and Sediment Transport Models for Reservoir Management. Master’s Thesis, BOKU University, Vienna, Austria, 2015. [Google Scholar]
- Kessler, C. Variantenuntersuchung der Verlandungsprozesse von Speicherseen der Vorarlberger Illwerke Basierend Auf Numerischer Modellierung. Master’s Thesis, BOKU University, Vienna, Austria, 2013. [Google Scholar]
- Glas, M.; Tritthart, M.; Zens, B.; Keckeis, H.; Lechner, A.; Kaminskas, T.; Habersack, H. Modelling the Dispersal of Riverine Fish Larvae: From a Raster-Based Analysis of Movement Patterns within a Racetrack Flume to a Rheoreaction-Based Correlated Random Walk (RCRW) Model Approach. Can. J. Fish. Aquat. Sci. 2017, 74, 1474–1489. [Google Scholar] [CrossRef]
- Farhadi, A.; Mayrhofer, A.; Tritthart, M.; Glas, M.; Habersack, H. Accuracy and Comparison of Standard kk-ϵϵ with Two Variants of k-ω Turbulence Models in Fluvial Applications. Eng. Appl. Comput. Fluid Mech. 2018, 12, 216–235. [Google Scholar] [CrossRef]
- Haimann, M.; Hauer, C.; Tritthart, M.; Prenner, D.; Leitner, P.; Moog, O.; Habersack, H. Monitoring and Modelling Concept for Ecological Optimized Harbour Dredging and Fine Sediment Disposal in Large Rivers. Hydrobiologia 2018, 814, 89–107. [Google Scholar] [CrossRef]
- Tritthart, M.; Haimann, M.; Habersack, H.; Hauer, C. Spatio-temporal variability of suspended sediments in rivers and ecological implications of reservoir flushing operations. River Res. Applic. 2019, 35, 918–931. [Google Scholar] [CrossRef]
- Krone, R.B. Flume Studies of Transport of Sediment in Estuarial Shoaling Processes; Technical Report; Hydraulic Engineering and Sanitary Engineering Research Laboratory, University of California: Berkeley, CA, USA, 1962. [Google Scholar]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Div. ASCE 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS: River Analysis System: Hydraulic Reference Manual, version 5.0; U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC): Davis, CA, USA, 2016.
- Vienna Scientific Cluster (VSC4). Available online: https://vsc.ac.at/home/ (accessed on 9 February 2025).
- Pasiok, R.; Dębek, L. RiverGIS. Available online: http://rivergis.com/ (accessed on 20 March 2020).
- Dahl, T.A.; Heath, R.E.; Gibson, S.A.; Nygaard, C.J. HEC-RAS Unsteady Flow and Sediment Model of the Mississippi River: Tarbert Landing to the Gulf; MRGP Report No. 25; U.S. Army Corps of Engineers, Mississippi Valley Division & Engineer Research and Development Center: Vicksburg, MS, USA, 2018.
- Lara, J.M.; Pemberton, E.L. Initial Unit-Weight of Deposited Sediments. In Proceedings of the Federal Inter-Agency Sedimentation Conference, Jackson, MS, USA, 23 January 23–1 February 1963; U.S.D.A.: Washington, DC, USA, 1963; p. 28. [Google Scholar]
- Liu, J.; Shen, Y.; Wang, X. Flocculation Properties of Cohesive Fine-Grained Sediment in the Three Gorges Reservoir under Variable Turbulent Shear. J. Mt. Sci. 2022, 19, 2286–2296. [Google Scholar] [CrossRef]
- Ternat, F.; Boyer, P.; Anselmet, F.; Amielh, M. Erosion Threshold of Saturated Natural Cohesive Sediments: Modeling and Experiments. Water Resour. Res. 2008, 44, W11434. [Google Scholar] [CrossRef]
- Tasser, T. Morphodynamische Modellierung der Auswirkungen von Stauraummanagementmaßnahmen im Pulangi Fluss, Philippinen. Master’s Thesis, BOKU University, Vienna, Austria, 2020. [Google Scholar]
- Berghout, A.; Meddi, M. Sediment Transport Modelling in Wadi Chemora during Flood Flow Events. J. Water Land. Dev. 2016, 31, 23–31. [Google Scholar] [CrossRef]
- Tarar, Z.R.; Ahmad, S.R.; Ahmad, I.; Khan, Z.M.; Washakh, R.M.A.; Ateeq-Ur-Rehman, S.; Bui, M.D. Effect of Sediment Load Boundary Conditions in Predicting Sediment Delta of Tarbela Reservoir in Pakistan. Water 2019, 11, 1716. [Google Scholar] [CrossRef]
- Toffaleti, F.B. A Procedure for Computation of Total River Sand Discharge and Detailed Distribution, Bed to Surface; Technical Report No. 5; Committee on Channel Stabilization, U.S. Army Corps of Engineers: Washington, DC, USA, 1968.
- Laursen, E.M. Total Sediment Load of Streams. J. Hydraul. Div. Am. Soc. Civ. Eng. 1958, 84, 1530-1–1530-36. [Google Scholar] [CrossRef]
- Meyer-Peter, E.; Müller, R. Formulas for Bedload Transport. In Proceedings of the 2nd IAHR Congress, Stockholm, Sweden, 7–9 June 1948. [Google Scholar]
- Yang, C.T. Incipient Motion and Sediment Transport. J. Hydraul. Div. Am. Soc. Civ. Eng. 1973, 99, 1679–1704. [Google Scholar] [CrossRef]
- Wilcock, P.R.; Crowe, J.C. Surface-Based Transport Model for Mixed-Size Sediment. J. Hydraul. Eng. 2003, 129, 120–128. [Google Scholar] [CrossRef]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Streams; Technical University of Denmark: Copenhagen, Denmark, 1967; p. 63. [Google Scholar]
- Tritthart, M.; Liedermann, M.; Klösch, M.; Habersack, H. Innovationen in der Modellierung von Sedimenttransport und Morphodynamik basierend auf dem Simulationsmodell iSed. Osterr. Wasser-Abfallwirtsch. 2012, 64, 544–552. [Google Scholar] [CrossRef]
- Mohammad, M.E.; Al-Ansari, N.; Issa, I.E.; Knutsson, S. Sediment in Mosul Dam reservoir using the HEC-RAS model. Lakes Reserv. Res. Manag. 2016, 21, 235–244. [Google Scholar] [CrossRef]
- Mustafa, A.S.; Sulaiman, S.O.; Al-Alwani, K.M. Application of HEC-RAS model to predict sediment transport for Euphrates River from Haditha to Heet 2016. Al-Nahrain J. Eng. Sci. 2017, 20, 570–577. [Google Scholar]
Parameter | Parameter Description | Unit | Scenarios for Pulangi IV Reservoir Model | ||
---|---|---|---|---|---|
C-75 | 1-250 | 2-250 | |||
Qin | reservoir inflow | m3s−1 | 75 | 250 | 250 |
Winit | initial reservoir water level | m | 284.62 | max OL = 285.5 | max OL = 285.5 |
Wmin | minimum drawdown water level | m | 281.0 | 280.0 | 280.0 |
Δh | water level drawdown height | m | 3.62 | 4.5 | 4.5 |
B | gate opening for the two bottom sluice gates (BS) during drawdown flushing | m | range: 0 to 5.0 1 average: 1.36 | 3.0 | 3.0 |
QT | turbine discharge | m3s−1 | 60 ± 22 2 | 275 | 275 |
Qout | reservoir outflow through the two BS gates and the turbines (HW): Qout = f(W, B, QT) | 355 ± 269 | 959 ± 21 | 959 ± 21 | |
T | simulation time | h | 5.83 | 4.40 | 4.80 |
ΔD | dredging volume | Mm3 | - | - | 2.2 |
scenarios for Pulangi river downstream of the dam | |||||
C-75 | D | ||||
Qin | discharge | m3s−1 | Qout of reservoir 2 | 200 to 800 | |
T | h | 5.83 | 72 | ||
ΔD | dumping volume | m3 | - | 6000 m3 |
Description | τc,se (Nm−2) | τc,me (Nm−2) |
---|---|---|
16 samples | 2.84 ± 3.11 | 5.91 ± 3.23 |
6 samples, stored in water for 1 week | 0.81 ± 0.40 | 4.81 ± 1.46 |
P3 (6 to 16 cm), stored in water for 1 week | 0.819 | 3.29 |
P3 (42 to 48 cm), stored in water for 1 week | 0.398 to 0.496 | 2.321 to 4.033 |
P3 (48 to 52 cm), stored in water for 1 week | 0.340 to 0.513 | no value 1 |
P11 (0 to 15 cm), stored in water for 1 week | 1.373 | 5.815 |
P11 (30 to 37 cm), stored in water for 1 week | 0.913 | 4.033 |
16 samples, minimum value | 0.340 | 2.321 |
16 samples, maximum value | 12.205 | 12.141 |
Parameter Name | Parameter | Value |
---|---|---|
Critical shear stress value for full deposition | τd,full | 0.000010 |
Critical shear stress value for partial deposition | τd,part | 0.60 |
equilibrium concentration | ceq | 823 mg/L = cin |
Surface erosion rate constant | Mse | 2.5 · 10−5 ms−1 |
Mass erosion rate constant | Mme | 2.1 · 10−4 ms−1 |
Critical shear stress value for surface erosion | τc,se | 1 Nm−2 |
Critical shear stress value for mass erosion | τc,me | 3.5 Nm−2 |
Settling velocity | w | Ref. [71] |
Parameter | Parameter Value/Change (%) | Change in ΔS (%) | ||
---|---|---|---|---|
C-75 | 1-250 | 2-250 | ||
τc,min | τc,se = 0.398 Nm−2/−60% | −103% | −72% | −56% |
τc,me = 2.321 Nm−2/−34% | ||||
τc,max | τc,se = 12.205 Nm−2/+1121% | +72% | +73% | +51% |
τc,me = 12.205 Nm−2/+249% | ||||
w1 | after [42]/−80% | +13 | -5% | - |
ceq2 | 207 mg/L/−75% | −1% | +3% | - |
Parameter 1 | Δ Parameter 1 (%) | Parameter 2 | Δ Parameter 2 (%) | Relative Erosion (%) | |||
---|---|---|---|---|---|---|---|
Q (m3s−1) | t = 12 h | t = 24 h | t = 48 h | t = 72 h | |||
200 | - | - | - | 55 | 88 | 97 | 100 |
300 | +50 | - | - | 62 | 90 | 98 | 99 |
400 | +100 | - | - | 68 | 90 | 98 | 99 |
500 | +150 | - | - | 72 | 90 | 98 | 98 |
600 | +200 | - | - | 73 | 90 | 99 | 99 |
700 | +250 | - | - | 74 | 91 | 99 | 99 |
range (%) *: | +250 | 19 | 2.8 | 1.6 | 1.9 | ||
τc,se (Nm−2) | τc,me (Nm−2) | t = 12 h | t = 24 h | t = 48 h | t = 72 h | ||
1 | - | 4 | - | 55 | 89 | 98 | 100 |
12.2 | +1120 | 12.2 | +205 | 51 | 85 | 95 | 98.5 |
0.340 | −66 | 2.31 | −42 | 54 | 88 | 97 | 100 |
range (%) *: | 1186 | 247 | 3.2 | 3.0 | 1.9 | 1.5 | |
n | - | - | t = 12 h | t = 24 h | t = 48 h | t = 72 h | |
0.037 | - | - | - | 54 | 88 | 97 | 100 |
0.033 | −11 | - | - | 47 | 82 | 96 | 99 |
0.041 | +11 | - | - | 65 | 91 | 98 | 99 |
range (%) *: | 22 | - | - | 17.9 | 8.6 | 2.1 | 1.3 |
dex | - | - | - | t = 12 h | t = 24 h | t = 48 h | t = 72 h |
4 d90 | - | - | - | 55 | 89 | 98 | 100 |
1 d90 | −75 | - | - | 31 | 61 | 93 | 97 |
8 d90 | +100 | - | - | 63 | 91 | 98 | 101 |
12 d90 | +200 | - | - | 64 | 91 | 98 | 100 |
range (%) *: | 275 | 33.0 | 30.2 | 5.8 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glas, M.; Tritthart, M.; Pessenlehner, S.; Morris, G.; Lichtneger, P.; Tabios, G.I.Q.; Eftymiou, N.; Karki, P.; Habersack, H. Modeling and Monitoring of Drawdown Flushing and Dredging Toward Sustainable Sluicing in a Wide Philippine Reservoir. Water 2025, 17, 2514. https://doi.org/10.3390/w17172514
Glas M, Tritthart M, Pessenlehner S, Morris G, Lichtneger P, Tabios GIQ, Eftymiou N, Karki P, Habersack H. Modeling and Monitoring of Drawdown Flushing and Dredging Toward Sustainable Sluicing in a Wide Philippine Reservoir. Water. 2025; 17(17):2514. https://doi.org/10.3390/w17172514
Chicago/Turabian StyleGlas, Martin, Michael Tritthart, Sebastian Pessenlehner, Gregory Morris, Petr Lichtneger, Guillermo III Q Tabios, Nikolaos Eftymiou, Pravin Karki, and Helmut Habersack. 2025. "Modeling and Monitoring of Drawdown Flushing and Dredging Toward Sustainable Sluicing in a Wide Philippine Reservoir" Water 17, no. 17: 2514. https://doi.org/10.3390/w17172514
APA StyleGlas, M., Tritthart, M., Pessenlehner, S., Morris, G., Lichtneger, P., Tabios, G. I. Q., Eftymiou, N., Karki, P., & Habersack, H. (2025). Modeling and Monitoring of Drawdown Flushing and Dredging Toward Sustainable Sluicing in a Wide Philippine Reservoir. Water, 17(17), 2514. https://doi.org/10.3390/w17172514