Model Insights into the Role of Bed Topography on Wetland Performance
Abstract
1. Introduction
2. Model
2.1. Wetland Model
2.2. Hydrodynamic Model
2.3. Solute Transport Model
2.4. Numerical Simulations
2.5. Bed Topography
2.6. Efficiency Metrics
3. Results and Discussion
3.1. Flow Patterns
3.2. Isotropic Bed Topography
3.3. Anisotropic Bed Topography
3.4. Impact on Contaminant Removal Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef]
- Katsenovich, Y.P.; Hummel-Batista, A.; Ravinet, A.J.; Miller, J.F. Performance evaluation of constructed wetlands in a tropical region. Ecol. Eng. 2009, 35, 1529–1537. [Google Scholar] [CrossRef]
- Cheng, Y.; Stieglitz, M.; Turk, G.; Engel, V. Effects of anisotropy on pattern formation in wetland ecosystems. Geophys. Res. Lett. 2011, 38, L04402. [Google Scholar] [CrossRef]
- Dallan, E.; Bottacin-Busolin, A.; Sabokrouhiyeh, N.; Tregnaghi, M.; Marion, A. Numerical Study of Sedimentation in Uniformly Vegetated Wetlands. In Proceedings of the Free Surface Flows and Transport Processes, Jachranka, Poland, 23–26 May 2017; Kalinowska, M.B., Mrokowska, M.M., Rowiński, P.M., Eds.; Springer: Cham, Switzerland, 2018; pp. 167–179. [Google Scholar] [CrossRef]
- Martín, M.; Oliver, N.; Hernández-Crespo, C.; Gargallo, S.; Regidor, M.C. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecol. Eng. 2013, 50, 52–61. [Google Scholar] [CrossRef]
- Sabokrouhiyeh, N.; Bottacin-Busolin, A.; Nepf, H.; Marion, A. Effects of Vegetation Density and Wetland Aspect Ratio Variation on Hydraulic Efficiency of Wetlands. In Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces: 34th International School of Hydraulics; Rowiński, P., Marion, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 101–113. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). J. Environ. Sci. 2015, 30, 30–46. [Google Scholar] [CrossRef]
- Kotti, I.P.; Gikas, G.D.; Tsihrintzis, V.A. Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecol. Eng. 2010, 36, 862–875. [Google Scholar] [CrossRef]
- Cameron, K.; Madramootoo, C.; Crolla, A.; Kinsley, C. Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland. Water Res. 2003, 37, 2803–2812. [Google Scholar] [CrossRef]
- Arheimer, B.; Wittgren, H.B. Modelling nitrogen removal in potential wetlands at the catchment scale. Ecol. Eng. 2002, 19, 63–80. [Google Scholar] [CrossRef]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, X.; Xu, Z.; Feng, C.; Pan, W.; Lu, L.; Luo, W. Review of hydraulic conditions optimization for constructed wetlands. J. Environ. Manag. 2024, 370, 122377. [Google Scholar] [CrossRef]
- Marion, A.; Nikora, V.; Puijalon, S.; Bouma, T.; Koll, K.; Ballio, F.; Tait, S.; Zaramella, M.; Sukhodolov, A.; O’Hare, M.; et al. Aquatic interfaces: A hydrodynamic and ecological perspective. J. Hydraul. Res. 2014, 52, 744–758. [Google Scholar] [CrossRef]
- Jiang, L.; Chui, T.F.M. A review of the application of constructed wetlands (CWs) and their hydraulic, water quality and biological responses to changing hydrological conditions. Ecol. Eng. 2022, 174, 106459. [Google Scholar] [CrossRef]
- Thackston, E.L.; Shields, F.D.; Schroeder, P.R. Residence Time Distributions of Shallow Basins. J. Environ. Eng. 1987, 113, 1319–1332. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Thullen, J.S.; Sartoris, J.J.; Nelson, S.M. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance. Ecol. Eng. 2005, 25, 583–593. [Google Scholar] [CrossRef]
- Lightbody, A.F.; Nepf, H.M.; Bays, J.S. Modeling the hydraulic effect of transverse deep zones on the performance of short-circuiting constructed treatment wetlands. Ecol. Eng. 2009, 35, 754–768. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.C.; Ge, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecol. Eng. 2015, 83, 268–275. [Google Scholar] [CrossRef]
- Musner, T.; Bottacin-Busolin, A.; Zaramella, M.; Marion, A. A contaminant transport model for wetlands accounting for distinct residence time bimodality. J. Hydrol. 2014, 515, 237–246. [Google Scholar] [CrossRef]
- Savickis, J.; Bottacin-Busolin, A.; Zaramella, M.; Sabokrouhiyeh, N.; Marion, A. Effect of a meandering channel on wetland performance. J. Hydrol. 2016, 535, 204–210. [Google Scholar] [CrossRef]
- Sabokrouhiyeh, N.; Bottacin-Busolin, A.; Savickis, J.; Nepf, H.; Marion, A. A numerical study of the effect of wetland shape and inlet-outlet configuration on wetland performance. Ecol. Eng. 2017, 105, 170–179. [Google Scholar] [CrossRef]
- Sabokrouhiyeh, N.; Bottacin-Busolin, A.; Tregnaghi, M.; Nepf, H.; Marion, A. Variation in contaminant removal efficiency in free-water surface wetlands with heterogeneous vegetation density. Ecol. Eng. 2020, 143, 105662. [Google Scholar] [CrossRef]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Carleton, J.N.; Grizzard, T.J.; Godrej, A.N.; Post, H.E. Factors affecting the performance of stormwater treatment wetlands. Water Res. 2001, 35, 1552–1562. [Google Scholar] [CrossRef]
- Jadhav, R.S.; Buchberger, S.G. Effects of vegetation on flow through free water surface wetlands. Ecol. Eng. 1995, 5, 481–496. [Google Scholar] [CrossRef]
- Holland, J.F.; Martin, J.F.; Granata, T.; Bouchard, V.; Quigley, M.; Brown, L. Effects of wetland depth and flow rate on residence time distribution characteristics. Ecol. Eng. 2004, 23, 189–203. [Google Scholar] [CrossRef]
- Persson, J.; Somes, N.L.G.; Wong, T.H.F. Hydraulics efficiency of constructed wetlands and ponds. Water Sci. Technol. 1999, 40, 291–300. [Google Scholar] [CrossRef]
- Harvey, J.W.; Saiers, J.E.; Newlin, J.T. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Moser, K.; Ahn, C.; Noe, G. Characterization of microtopography and its influence on vegetation patterns in created wetlands. Wetlands 2007, 27, 1081–1097. [Google Scholar] [CrossRef]
- Diamond, J.S.; McLaughlin, D.L.; Slesak, R.A.; Stovall, A. Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands. Biogeosciences 2020, 17, 901–915. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X.; Li, D.; Xu, G.; Guo, Y. Spatial heterogeneity of vegetation extent and the response to water level fluctuations and micro-topography in Poyang Lake, China. Ecol. Indic. 2021, 124, 107420. [Google Scholar] [CrossRef]
- Vulliet, C.; Koci, J.; Sheaves, M.; Waltham, N. Linking tidal wetland vegetation mosaics to micro-topography and hydroperiod in a tropical estuary. Mar. Environ. Res. 2024, 197, 106485. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, H.; Rezanezhad, F.; Zak, D.; Lennartz, B. The influence of microtopography on soil carbon accumulation and nutrient release from a rewetted coastal peatland. Geoderma 2023, 438, 116637. [Google Scholar] [CrossRef]
- Sarkar, P.; Das, T.; Adhikari, D. Variation in species assemblages due to micro-topography and flow regime govern vegetation carbon stock in seasonal floodplain wetlands. Ecol. Process. 2019, 8, 49. [Google Scholar] [CrossRef]
- Keiser, A.D.; Davis, C.L.; Smith, M.; Bell, S.L.; Hobbie, E.A.; Hofmockel, K.S. Depth and microtopography influence microbial biogeochemical processes in a forested peatland. Plant Soil 2024, 509, 833–846. [Google Scholar] [CrossRef]
- Smith, A.; Guntenspergen, G.; Carr, J.; Walters, D.; Kirwan, M. Microtopographic Variation as a Potential Early Indicator of Ecosystem State Change and Vulnerability in Salt Marshes. Estuaries Coasts 2024, 47, 2120–2134. [Google Scholar] [CrossRef]
- Zhang, K.; Xia, J.; Su, L.; Gao, F.; Cui, Q.; Xing, X.; Dong, M.; Li, C. Effects of microtopographic patterns on plant growth and soil improvement in coastal wetlands of the Yellow River Delta. Front. Plant Sci. 2023, 14, 1162013. [Google Scholar] [CrossRef]
- Harvey, J.; Choi, J.; Wilcox, W.; Brown, M.; Lal, W. Biophysical simulation of wetland surface water flow to predict changing water availability in the Everglades. Ecol. Eng. 2025, 212, 107491. [Google Scholar] [CrossRef]
- Wu, W. Computational River Dynamics, 1st ed.; CRC Press: London, UK, 2007. [Google Scholar] [CrossRef]
- Valiela, I.; Teal, J.M.; Deuser, W.G. The Nature of Growth Forms in the Salt Marsh Grass Spartina alterniflora. Am. Nat. 1978, 112, 461–470. [Google Scholar] [CrossRef]
- Hudon, C. Shift in wetland plant composition and biomass following low-level episodes in the St. Lawrence River: Looking into the future. Can. J. Fish. Aquat. Sci 2004, 61, 603–617. [Google Scholar] [CrossRef]
- Serra, T.; Fernando, H.J.S.; Rodrìguez, R.V. Effects of emergent vegetation on lateral diffusion in wetlands. Water Res. 2004, 38, 139–147. [Google Scholar] [CrossRef] [PubMed]
- van Leer, B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 1974, 14, 361–370. [Google Scholar] [CrossRef]
- LeVeque, R.J. Wave Propagation Algorithms for Multidimensional Hyperbolic Systems. J. Comput. Phys. 1997, 131, 327–353. [Google Scholar] [CrossRef]
- Calhoun, D.; LeVeque, R.J. A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries. J. Comput. Phys. 2000, 157, 143–180. [Google Scholar] [CrossRef]
- Lang, A.; Potthoff, J. Fast simulation of Gaussian random fields. Monte Carlo Methods Appl. 2011, 17, 195–214. [Google Scholar] [CrossRef]
- Price, J.S. Water Level Regimes in Prairie Sloughs. Can. Water Resour. J. / Rev. Can. Des Ressources Hydriques 1993, 18, 95–106. [Google Scholar] [CrossRef]
- Fogler, H. Elements of Chemical Reaction Engineering, Global Edition, 6th ed.; Pearson Education Limited: Boston, MA, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottacin-Busolin, A.; Santovito, G.; Marion, A. Model Insights into the Role of Bed Topography on Wetland Performance. Water 2025, 17, 2528. https://doi.org/10.3390/w17172528
Bottacin-Busolin A, Santovito G, Marion A. Model Insights into the Role of Bed Topography on Wetland Performance. Water. 2025; 17(17):2528. https://doi.org/10.3390/w17172528
Chicago/Turabian StyleBottacin-Busolin, Andrea, Gianfranco Santovito, and Andrea Marion. 2025. "Model Insights into the Role of Bed Topography on Wetland Performance" Water 17, no. 17: 2528. https://doi.org/10.3390/w17172528
APA StyleBottacin-Busolin, A., Santovito, G., & Marion, A. (2025). Model Insights into the Role of Bed Topography on Wetland Performance. Water, 17(17), 2528. https://doi.org/10.3390/w17172528