Patterns of Groundwater Flow Systems and Travel Times Controlled by Leaking Streams, Evapotranspiration, and Pumping Wells in the Kongqi River Basin, China
Abstract
Key Points
- 1.
- Heavy groundwater abstraction significantly changes the GFS patterns.
- 2.
- Pumping wells accelerate the groundwater flow and reduce the travel time.
- 3.
- The power-law distribution fits the TTD and RTD better than the exponential distribution.
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Numerical Modeling of Regional Groundwater Flow Scenarios
2.3.1. Model Setup and Boundary Conditions
2.3.2. Modeling Scenarios, Driving Forces, and Parameters
2.3.3. Modules Selection for Groundwater ET
2.3.4. Model Calibration
2.4. Streamlines Tracking and Flow Systems Delineation
2.5. Statistics of Travel and Residence Times
3. Results
3.1. Groundwater-Level Distributions
3.2. Patterns of Streamlines and Statistics of Travel Times
3.3. Patterns of GFS
4. Discussion
4.1. Formation Mechanism of GFS Patterns
4.2. The Role of Groundwater ET
4.3. Compare to Existing Studies on Residence Time Distributions
4.4. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GFS | Groundwater flow systems |
ET | Evapotranspiration |
TTD | Travel time distribution |
RTD | Residence time distribution |
WTD | Water table depth |
Probability density function | |
Std Dev | Standard deviation |
CV | Coefficient of variation |
References
- Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 1963, 6, 4795–4812. [Google Scholar] [CrossRef]
- Engelen, G.B.; Kloosterman, F.H. Hydrological Systems Analysis: Methods and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Wang, X.S.; Wan, L.; Jiang, X.W.; Li, H.; Wang, J.Z.; Zhou, Y.; Ji, X. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Adv. Water Resour. 2017, 108, 139–156. [Google Scholar] [CrossRef]
- Jiang, X.W.; Wang, X.S.; Wan, L.; Ge, S. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resour. Res. 2011, 47, W01512. [Google Scholar] [CrossRef]
- Wang, X.S.; Jiang, X.W.; Wan, L.; Ge, S.; Li, H. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability. Water Resour. Res. 2011, 47, W09603. [Google Scholar] [CrossRef]
- Freeze, R.A.; Witherspoon, P.A. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variations. Water Resour. Res. 1967, 3, 623–634. [Google Scholar] [CrossRef]
- Anderson, M.P.; Munter, J.A. Seasonal reversals of groundwater flow around lakes and the relevance to stagnation points and lake budgets. Water Resour. Res. 1981, 17, 1139–1150. [Google Scholar] [CrossRef]
- Cardenas, M.B. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophys. Res. Lett. 2007, 34, L0540. [Google Scholar] [CrossRef]
- Gleeson, T.; Manning, A.H. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls. Water Resour. Res. 2008, 44, W10403. [Google Scholar] [CrossRef]
- Han, P.F.; Wang, X.S.; Zhou, Y.X.; Yang, Z.; Wan, L.; Chen, J.S.; Jiang, X.W. Three-dimensional inter-basin groundwater flow toward a groundwater-fed stream: Identification, partition, and quantification. J. Hydrol. 2024, 629, 130524. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Jin, M.; Lu, X.; Zhang, R. Direct observation of complex Tóthian groundwater flow systems in the laboratory. Hydrol. Process. 2010, 24, 3568–3573. [Google Scholar] [CrossRef]
- Goderniaux, P.; Davy, P.; Bresciani, E.; Dreuzy, J.R.; Borgne, T. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resour. Res. 2013, 49, 2274–2286. [Google Scholar] [CrossRef]
- Wang, J.Z.; Wörman, A.; Bresciani, E.; Wan, L.; Wang, X.S.; Jiang, X.W. On the use of late-time peaks of residence time distributions for the characterization of hierarchicallynested groundwater flow systems. J. Hydrol. 2016, 543, 47–58. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Feng, X.H.; Neal, C. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations. J. Hydrol. 2001, 254, 82–101. [Google Scholar] [CrossRef]
- Cornaton, F.; Perrochet, P. Groundwater age, life expectancy and transit time distributions in advective–dispersive systems: 1. Generalized reservoir theory. Adv. Water Resour. 2006, 29, 1267–1291. [Google Scholar] [CrossRef]
- Meals, D.W.; Dressing, S.A.; Davenport, T.E. Lag time in water quality response to best management practices: A review. J. Environ. Qual. 2010, 39, 85–96. [Google Scholar] [CrossRef]
- Basu, N.B.; Jindal, P.; Schilling, K.E.; Wolter, C.F.; Takle, E.S. Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution. J. Hydrol. 2012, 475, 65–73. [Google Scholar] [CrossRef]
- Duckett, K.A.; Langman, J.B.; Bush, J.H.; Brooks, E.S.; Dunlap, P.; Stanley, J. Noble gases, dead carbon, and reinterpretation of groundwater ages and travel time in local aquifers of the Columbia River Basalt Group. J. Hydrol. 2020, 581, 124400. [Google Scholar] [CrossRef]
- Schaper, J.L.; Zarfl, C.; Meinikmann, K.; Banks, E.W.; Baron, S.; Cirpka, O.A.; Lewandowski, J. Spatial Variability of Radon Production Rates in an Alluvial Aquifer Affects Travel Time Estimates of Groundwater Originating from a Losing Stream. Water Resour. Res. 2022, 58, e2021WR030635. [Google Scholar] [CrossRef]
- Wörman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophys. Res. Lett. 2007, 34, L07402. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Jiang, X.W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour. Res. 2010, 46, W11538. [Google Scholar] [CrossRef]
- Jing, M.; Heße, F.; Kumar, R.; Kolditz, O.; Kalbacher, T.; Attinger, S. Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions. Hydrol. Earth Syst. Sci. 2019, 23, 171–190. [Google Scholar] [CrossRef]
- Zehe, E.; Loritz, R.; Edery, Y.; Berkowitz, B. Preferential pathways for fluid and solutes in heterogeneous groundwater systems: Self-organization, entropy, work. Hydrol. Earth Syst. Sci. 2021, 25, 5337–5353. [Google Scholar] [CrossRef]
- Schiavo, M.; Riva, M.; Guadagnini, L.; Zehe, E.; Guadagnini, A. Probabilistic identification of preferential groundwater networks. J. Hydrol. 2022, 610, 127906. [Google Scholar] [CrossRef]
- Brunner, P.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Sustainable irrigation in the Yanqi basin, China. Sustain. Irrig. Manag. Technol. Policies 2006, 96, 115–125. [Google Scholar]
- Chen, Y.N.; Li, Z.Q.; Xu, J.H.; Shen, Y.J.; Xing, X.X.; Xie, T.; Li, Z.; Yang, L.S.; Xi, H.Y.; Zhu, C.G.; et al. Water resources and eco-environmental changes in arid regions of Northwest China and related protection suggestions. Bull. Chin. Acad. Sci. 2023, 38, 385–393. (In Chinese) [Google Scholar]
- Zhang, J.; Yin, L.H.; Gu, X.F.; Li, Y.; Yang, B.C.; Jiang, J.; Jia, W.H.; Xie, W.B.; Wang, T.; Tang, X.P.; et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry Method. Northwestern Geol. 2021, 54, 185–195, (In Chinese with English Abstract). [Google Scholar]
- Han, P.F.; Wang, X.S.; Zhang, J.; Wan, L.; Chen, J.S.; Yu, K. Evolution characteristics of groundwater flow systems in the past 50 years in Kongqi River irrigation district, Xinjiang, China. Bull. Geol. Sci. Technol. 2022, 41, 109–118, (In Chinese with English Abstract). [Google Scholar]
- Ma, J.X.; Huang, X.; Zhu, C.G.; Chen, H.Y.; Li, Y.P. Study on groundwater response after emergency water conveyance in the Peacock River. Xinjiang Environ. Prot. 2017, 39, 13–17. (In Chinese) [Google Scholar]
- Li, Y.P.; He, Y.; Li, W.H. Simulation analysis of the influence radius of groundwater level changes along the Peacock River, Xinjiang. Environ. Sustain. Dev. 2017, 42, 145–147. (In Chinese) [Google Scholar]
- Zhang, H.Y.; Wang, X.S.; Zhang, J.; Gu, X.F.; Yin, L.H.; Yeh, P.J.F. Spatial-temporal variations in vegetation with changing water stress in the Kongqi River basin, China. Ecohydrology 2023, 16, e2546. [Google Scholar] [CrossRef]
- Long, R.; Zhang, J.; Yu, K.; Gu, X.F.; Li, Y.; Dong, J.Q.; Su, X.; Zhu, J. Groundwater evolution and ecological effect in the Kongque River Basin, Xinjiang. Hydrogeol. Eng. Geol. 2023, 50, 41–50, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.F.; Meng, F.H.; Bao, A.M.; Li, C.C.; Qi, X.D.; Liu, T.; Zhang, P.F. Land use/cover change of artificial oasis in the Peacock River Basin, Xinjiang, over the past 40 years. Chin. J. Desert Res. 2018, 38, 664. (In Chinese) [Google Scholar]
- Deng, M.J. Remote sensing monitoring and assessment of ecological water conveyance and vegetation restoration in the lower reaches of the Tarim River. J. Glaciol. Geocryol. 2007, 29, 380–386. (In Chinese) [Google Scholar]
- Hao, X.; Li, W. Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China. Environ. Monit. Assess. 2014, 186, 7605–7616. [Google Scholar] [CrossRef] [PubMed]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Ground-Water Flow Process; Open-File Report 00-92; USGS: Denver, CO, USA, 2000.
- Li, H.T.; Kinzelbach, W.; Brunner, P.; Li, W.P.; Dong, X.G. Topography representation methods for improving evaporation simulation in groundwater modeling. J. Hydrol. 2008, 356, 199–208. [Google Scholar] [CrossRef]
- Brunner, P.; Li, H.T.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Extracting phreatic evaporation from remotely sensed maps of evapotranspiration. Water Resour. Res. 2008, 44, W08428. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; McDonald, M.G. User’s Documentation for MODFLOW-96, an Update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model; Open-File Report 96-485; USGS: Denver, CO, USA, 1996.
- Zhou, J.L.; Dong, X.G.; Wang, B. Study on phreatic evaporation in the Xinjiang plain area. Eng. Geosci. Surv. 2003, 5, 23–27. (In Chinese) [Google Scholar]
- Zhao, Y.J. A Study on the Influence Factors and Calculation Method for Phreatic Water in Xinjiang Plain Area. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2012. (In Chinese). [Google Scholar]
- Averianov, S. Seepage from irrigation canals and its influence on regime of ground water table. In Influence of Irrigation Systems on Regime of Ground Water; Academic Press: Cambridge, MA, USA, 1956; pp. 140–151. [Google Scholar]
- Hu, S.J.; Song, Y.D.; Tian, C.Y.; Wang, J.L. Relationship between water surface evaporation and phreatic water evaporation when phreatic water buried depth is zero for different soil in Tarim River Basin. Trans. Chin. Soc. Agric. Eng. 2005, 1, 80–83, (In Chinese with English Abstract). [Google Scholar]
- Xing, X.G.; Shi, W.J.; Wang, Q.J. Discussion on E0 values in commonly used phreatic evaporation empirical models. Arid Area Agric. Res. 2013, 31, 57–60. (In Chinese) [Google Scholar]
- Banta, E.R. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model; Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1); Open-File Report 2000-466; USGS: Denver, CO, USA, 2000.
- Wilson, J.D.; Naff, R.L. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—GMG Linear Equation Solver Package Documentation; Open-File Report 2004-1261; USGS: Denver, CO, USA, 2004.
- Pollock, D.W. User’s Guide for MODPATH/MODPATH-PLOT, Version 3; a Particle Tracking Post-Processing Package for MODFLOW, the U.S. Geological Survey Finite-Difference Ground-Water Flow Model; Open-File Report 94-464; USGS: Denver, CO, USA, 1994.
- Pollock, D.W. User Guide for MODPATH Version 7—A Particle-Tracking Model for MODFLOW; Open-File Report 2016-1086; USGS: Reston, VA, USA, 2016.
- Pollock, D.W. Semianalytical computation of path lines for finite-difference models. Groundwater 1988, 26, 743–750. [Google Scholar] [CrossRef]
- Pérez-Illanes, R.; Fernàndez-Garcia, D. Multiprocessing for the particle tracking model MODPATH. Groundwater 2023, 61, 733–742. [Google Scholar] [CrossRef]
- Visser, A.; Heerdink, R.; Broers, H.P.; Bierkens, M.F.P. Travel time distributions derived from particle tracking in models containing weak sinks. Groundwater 2009, 47, 237–245. [Google Scholar] [CrossRef]
- Eberts, S.M.; Böhlke, J.K.; Kauffman, L.J.; Jurgens, B.C. Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol. J. 2012, 20, 263–282. [Google Scholar] [CrossRef]
- Haitjema, H.M. On the residence time distribution in idealized groundwatersheds. J. Hydrol. 1995, 172, 127–146. [Google Scholar] [CrossRef]
- Condon, L.E.; Hering, A.S.; Maxwell, R.M. Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm. Adv. Water Resour. 2015, 82, 106–123. [Google Scholar] [CrossRef]
- Schiavo, M. Entropy, fractality, and thermodynamics of groundwater pathways. J. Hydrol. 2023, 617, 128930. [Google Scholar] [CrossRef]
Parameters | Unit | Scenarios | ||
---|---|---|---|---|
M1 | M2 | |||
Hydraulic conductivity of aquifer media | horizontal | m/d | 2–80 | |
vertical | m/d | 0.2–20 | ||
Hydraulic conductivity of aquitard media | horizontal | m/d | 0.5–10 | |
vertical | m/d | 0.01–2 | ||
Mean annual precipitation | mm | 49 | 93 | |
Mean annual potential evaporation | mm | 1512 | 1400 | |
Inflow from the northern mountain front | ×108 m3/a | 1.54 | 1.61 | |
Inflow from the western boundary | ×108 m3/a | 0.63 | 0.67 | |
Mean annual streamflow of the Kongqi River | ×108 m3 | 12.4 | 18.7 | |
Effective length of the Kongqi River | km | 510 | 350 | |
Water levels in the Tarim River | m. a.s.l. | 862–915 | 861–913 | |
Area of irrigated croplands | km2 | 1713 | 2381 | |
Ratio of return flow in croplands | [-] | 0.27 | 0.05 | |
Water efficiency in canal system | [-] | 49.5% | 85.6% | |
Mean annual usage of irrigation water | ×108 m3 | 6 | 17 | |
Mean annual pumping of groundwater | ×108 m3 | 0 | 7 |
Title 1 | Statistics | Scenario M1 | Scenario M2 | |
---|---|---|---|---|
Travel time (ka) | Minimum | 0.0 | 0.0 | |
Maximum | 505.7 | 414.7 | ||
Mean | 22.8 | 25.6 | ||
Median | 9.7 | 8.3 | ||
Std Dev | 34.7 | 43.6 | ||
CV [-] | 1.5 | 1.7 | ||
Fitting exponential distribution, Equation (4) | T1 | 44.5 | 48.0 | |
R2 | 0.67 | 0.64 | ||
Fitting power-law distribution, Equation (5) | T2 | 9.4 | 8.9 | |
α [-] | 1.09 | 1.06 | ||
R2 | 0.92 | 0.96 | ||
Residence time (ka) | Minimum | 0.0 | 0.0 | |
Maximum | 505.7 | 414.7 | ||
Mean | 18.7 | 17.3 | ||
Median | 6.6 | 2.4 | ||
Std Dev | 30.6 | 36.3 | ||
CV [-] | 1.6 | 2.1 | ||
Fitting exponential distribution, Equation (4) | T1 | 43.3 | 48.8 | |
R2 | 0.75 | 0.65 | ||
Fitting power-law distribution, Equation (5) | T2 | 14.0 | 16.1 | |
α [-] | 1.18 | 1.26 | ||
R2 | 0.89 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Wang, X.-S. Patterns of Groundwater Flow Systems and Travel Times Controlled by Leaking Streams, Evapotranspiration, and Pumping Wells in the Kongqi River Basin, China. Water 2025, 17, 2542. https://doi.org/10.3390/w17172542
Xu Q, Wang X-S. Patterns of Groundwater Flow Systems and Travel Times Controlled by Leaking Streams, Evapotranspiration, and Pumping Wells in the Kongqi River Basin, China. Water. 2025; 17(17):2542. https://doi.org/10.3390/w17172542
Chicago/Turabian StyleXu, Qian, and Xu-Sheng Wang. 2025. "Patterns of Groundwater Flow Systems and Travel Times Controlled by Leaking Streams, Evapotranspiration, and Pumping Wells in the Kongqi River Basin, China" Water 17, no. 17: 2542. https://doi.org/10.3390/w17172542
APA StyleXu, Q., & Wang, X.-S. (2025). Patterns of Groundwater Flow Systems and Travel Times Controlled by Leaking Streams, Evapotranspiration, and Pumping Wells in the Kongqi River Basin, China. Water, 17(17), 2542. https://doi.org/10.3390/w17172542