Synthesis and Characterization of Visible-Light-Responsive TiO2/LDHs Heterostructures for Enhanced Photocatalytic Degradation Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of TiO2/LDHs
2.2.1. Preparation of TiO2 Sol
2.2.2. Synthesis of LDHs Precursors
2.2.3. Synthesis of TiO2/LDHs Nanocomposites
2.3. Characterization
2.4. Photocatalytic Experiments
3. Results and Discussion
3.1. Material Characterization and Analysis
3.1.1. X-Ray Powder Diffraction
3.1.2. Morphological Analysis of TiO2/LDHs
3.1.3. Raman Spectroscopy
3.1.4. UV–Vis Diffuse Reflectance Spectroscopy
3.1.5. Photoluminescence Spectroscopy
3.2. Photocatalytic Performance of Photocatalysts
3.2.1. Impact of Diverse Composite Materials on Photocatalytic Performance
3.2.2. Kinetic Analysis of Photocatalytic Reactions
3.2.3. Impact of Catalyst Concentration on Photocatalytic Performance
3.2.4. Impact of Inorganic Anions on Photocatalytic Reactions
3.2.5. Analysis of Photocatalytic Degradation Mechanism
3.2.6. Evaluation of Photocatalytic Stability in Composite Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Zhou, T.T.; Guo, H.; Ge, C.; Lu, J.J. Application of nano-TiO2@adsorbent composites in the treatment of dye wastewater: A review. J. Eng. Fibers Fabr. 2025, 20, 15589250251329450. [Google Scholar] [CrossRef]
- Chang, Q.; Jiang, G.D.; Hu, M.X.; Huang, J.; Tang, H.Q. Adsorption of Methylene Blue from Aqueous Solution onto Magnetic Fe3O4/Graphene Oxide Nanoparticles. Environ. Sci. 2014, 35, 1804–1809. (In Chinese) [Google Scholar] [CrossRef]
- Willison, E.O.C.; Lopes, A.S.C.; Monteiro, W.R.; Filho, G.N.R.; Nobre, F.X.; Luz, P.T.S.; Nascimento, L.A.S.; Costa, C.E.F.; Monteiro, W.F.; Vieira, M.O.; et al. Layered double hydroxides as heterostructure LDH@Bi2WO6 oriented toward visible-light-driven applications: Synthesis, characterization, and its photocatalytic properties. React. Kinet. Mech. Catal. 2020, 131, 505–524. [Google Scholar] [CrossRef]
- Fadzli, J.; Hamid, K.H.K.; Him, N.R.N.; Puasa, S.W. A critical review on the treatment of reactive dye wastewater. Desalin. Water Treat. 2022, 257, 185–203. [Google Scholar] [CrossRef]
- Li, Z.J.; Sun, Y.K.; Xing, J.; Meng, A. Fast removal of Methylene Blue by Fe3O4 magnetic nanoparticles and their cycling property. J. Nanosci. Nanotechnol. 2019, 19, 2116–2123. [Google Scholar] [CrossRef]
- Kang, J.Y.; Deng, S.; Han, X.; Wu, S.X.; Bai, Y.Y.; Jiang, Y.H.; Yang, Y. Adsorption Properties and Mechanism of Ciprofloxacin Enhanced by Mn-Doped Biochar. Res. Environ. Sci. 2024, 37, 2526–2536. (In Chinese) [Google Scholar] [CrossRef]
- Kim, Y.K.; Yoo, K.; Kim, M.S.; Han, I.; Lee, M.; Kang, B.R.; Lee, T.K.; Park, J. The capacity of wastewater treatment plants drives bacterial community structure and its assembly. Sci. Rep. 2019, 9, 14809. [Google Scholar] [CrossRef]
- Assress, H.A.; Selvarajan, R.; Nyoni, H.; Ntushelo, K.; Mamba, B.B.; Msagati, T.A.M. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci. Rep. 2019, 9, 14056. [Google Scholar] [CrossRef]
- Das, S.; Ghangrekar, M.M. Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell. Environ. Technol. 2020, 41, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Nobre, F.X.; Pessoa, W.A.; Ruiz, Y.L.; Bentes, V.L.I.; Silva-Moraes, M.O.; Silva, T.M.C.; Rocco, M.L.M.; Larrudé, D.R.G.; de Matos, J.M.E.; Couceiro, P.R.D. Facile synthesis of nTiO2 phase mixture: Characterization and catalytic performance. Mater. Res. Bull. 2019, 109, 60–71. [Google Scholar] [CrossRef]
- Bodzek, M.; Konieczny, K.; Kwiecinska-Mydlak, A. Nano-photocatalysis in water and wastewater treatment. Desalin. Water Treat. 2021, 243, 51–74. [Google Scholar] [CrossRef]
- Kumar, S.; Chanana, A. TiO2 based nanomaterial: Synthesis, structure, photocatalytic properties, and removal of dyes from wastewater. Korean J. Chem. Eng. 2023, 40, 1822–1838. [Google Scholar] [CrossRef]
- Liang, S.X.; Zhang, Y.H.; Sun, Z.C.; Chang, Y.K. Laboratory study on the evolution of waves parameters due to wave breaking in deep water. Wave Motion 2017, 68, 31–42. [Google Scholar] [CrossRef]
- Njema, G.G.; Kibet, J.K. A review of novel materials for nano-photocatalytic and optoelectronic applications: Recent perspectives, water splitting and environmental remediation. Prog. Eng. Sci. 2024, 1, 100018. [Google Scholar] [CrossRef]
- Chen, J.R.; Qiu, F.X.; Xu, W.Z.; Cao, S.S.; Zhu, H.J. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl. Catal. A-Gen. 2015, 495, 131–140. [Google Scholar] [CrossRef]
- Chen, S.Q.; Hu, Y.H. Color TiO2 Materials as Emerging Catalysts for Visible-NIR Light Photocatalysis, A Review. Catal. Rev.-Sci. Eng. 2023, 66, 1951–1991. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.Y.; Ma, Z.B.; Yang, X.M. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Peiris, S.; de Silva, H.B.; Ranasinghe, K.N.; Bandara, S.V.; Perera, I.R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021, 68, 738–769. [Google Scholar] [CrossRef]
- Fernandes, E.; Gomes, J.; Martins, R.C. Semiconductors Application Forms and Doping Benefits to Wastewater Treatment: A Comparison of TiO2, WO3, and g-C3N4. Catalysts 2022, 12, 1218. [Google Scholar] [CrossRef]
- Sari, Y.; Gareso, P.L.; Tahir, D. Review: Influence of synthesis methods and performance of rare earth doped TiO2 photocatalysts in degrading dye effluents. Int. J. Environ. Sci. Technol. 2025, 22, 1975–1994. [Google Scholar] [CrossRef]
- Indira, A.C.; Muthaian, J.R.; Pandi, M.; Mohammad, F.; Al-Lohedan, H.A.; Soleiman, A.A. Photocatalytic Efficacy and Degradation Kinetics of Chitosan-Loaded Ce-TiO2 Nanocomposite towards for Rhodamine B Dye. Catalysts 2023, 13, 1506. [Google Scholar] [CrossRef]
- Tiwari, V.; Pal, B.; Kaur, S. Photocatalysis of Ag-loaded MgTiO3 for degradation of fuchsin dye and dyes present in textile wastewater under sunlight. Sol. Energy 2025, 296, 113587. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.Q.; Liu, Y.F.; Sun, Y.X.; Zhao, Q.H.; Chen, T.L.; Chen, Y.F.; Wang, S.F. In Situ Construction of Bronze/Anatase TiO2 Homogeneous Heterojunctions and Their Photocatalytic Performances. Nanomaterials 2022, 12, 1122. [Google Scholar] [CrossRef]
- Fang, Q.; Sun, Q.; Zhong, R.; Wang, H.; Qi, J. Recent advances in doping engineering of heterogeneous catalyst for carbon dioxide hydrogenation. Mater. Today Chem. 2025, 46, 102770. [Google Scholar] [CrossRef]
- Khan, H.; Shah, M.U.H. Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: A review. J. Environ. Chem. Eng. 2023, 11, 11153. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Irie, H. Nitrogen-doped titanium dioxide as visible-light sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Y.; Li, J.; Xie, J.; He, C. Hydrodechlorination under O2 promotes catalytic oxidation of CVOCs over a Pt/TiO2 catalyst at low temperature. Chem. Commun. 2025, 61, 4710–4713. [Google Scholar] [CrossRef]
- Park, J.; Lam, S.S.; Park, Y.; Kim, B.J.; An, K.; Jung, S. Fabrication of Ni/TiO2 visible light responsive photocatalyst for decomposition of oxytetracycline. Environ. Res. 2023, 216, 114657. [Google Scholar] [CrossRef]
- Ramasubbu, V.; Kumar, P.R.; Chellapandi, T.; Madhumitha, G.; Mothi, E.M.; Shajan, X.S. Zn(II) porphyrin sensitized (TiO2@Cd-MOF) nanocomposite aerogel as novel photocatalyst for the effective degradation of methyl orange (MO) dye. Opt. Mater. 2022, 132, 112558. [Google Scholar] [CrossRef]
- Chen, A.; Chen, W.F.; Majidi, T.; Pudadera, B.; Koshy, P. Mo-doped, Cr-Doped, and Mo-Cr codoped TiO2 thin-film photocatalysts by comparative sol-gel spin coating and ion implantation. Int. J. Hydrogen Energy 2021, 46, 12961–12980. [Google Scholar] [CrossRef]
- Tasbihi, M.; Kocí, K.; Troppová, I.; Edelmannová, M.; Reli, M.; Capek, L.; Schomäcker, R. Photocatalytic reduction of carbon dioxide over Cu/TiO2 photocatalysts. Environ. Sci. Pollut. Res. 2018, 25, 34903–34911. [Google Scholar] [CrossRef]
- Zhu, X.F.; Cheng, B.; Yu, J.G.; Ho, W.K. Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. Appl. Surf. Sci. 2016, 364, 808–814. [Google Scholar] [CrossRef]
- Lim, C.; An, H.R.; Ha, S. Highly visible-light-responsive nanoporous nitrogen-doped TiO2 (N-TiO2) photocatalysts produced by underwater plasma technology for environmental and biomedical applications. Appl. Surf. Sci. 2023, 638, 158123. [Google Scholar] [CrossRef]
- Shuaib, S.S.A.; Lu, Y.; Wang, Q. Ti3C2 MXene-Derived TiO2/g-C3N4 Heterojunctions for Highly Efficient Photocatalytic H 2 Generation. Chem.-Catal. Chem. Eng. 2025, 7, 17. [Google Scholar] [CrossRef]
- Saqib, M.; Rahman, N.; Safeen, K. Structure phase-induced photodegradation properties of cobalt-sulfur co-doped TiO2 nanoparticles synthesized by hydrothermal route. J. Mater. Res. Technol. 2023, 26, 8048–8060. [Google Scholar] [CrossRef]
- Chen, Y.; Li, A.; Fu, X.; Peng, Z. Novel F-doped carbon nanotube@(N,F)-co-doped TiO2-δ nanocomposite: Highly active visible-light-driven photocatalysts for water decontamination. Appl. Surf. Sci. 2023, 609, 155460. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, Y.; Liu, S.; Korzeniewski, C.L.; Wang, S.; Fan, Z. Comparing Graphene-TiO2 Nanowire and Graphene-TiO2 Nanoparticle Composite Photocatalysts. ACS Appl. Mater. Interfaces 2012, 4, 3944–3950. [Google Scholar] [CrossRef]
- Yu, D.; Bai, J.; Liang, H.; Li, C. Electrospinning, solvothermal, and self-assembly synthesis of recyclable and renewable AgBrTiO2/CNFs with excellent visible-light responsive photocatalysis. J. Alloys Compd. 2016, 683, 329–338. [Google Scholar] [CrossRef]
- Sibi, M.G.; Verma, D.; Kim, J. Magnetic core-shell nanocatalysts: Promising versatile catalysts for organic and photocatalytic reactions. Catal. Rev. Sci. Eng. 2020, 62, 163–311. [Google Scholar] [CrossRef]
- Attia, M.S.; Abdel-Wahed, M.S.; El-Kalliny, A.S.; Badawy, M.I.; Gad-Allah, T.A. Core Double-Shell MnFe2O4@rGO@TiO2 Superparamagnetic Photocatalyst for Wastewater Treatment under Solar Light. Chem. Eng. J. 2020, 382, 122936. [Google Scholar] [CrossRef]
- Shu, J.; Yao, Y.; Zhang, X.; Zhang, L.; Zhao, H.; Zhang, S. Template-free synthesis of core-shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment. Int. J. Miner. Metall. Mater. 2023, 30, 177–191. [Google Scholar] [CrossRef]
- Park, J.; Lee, T.H.; Kim, C.; Lee, S.A.; Choi, M.J.; Kim, H.; Yang, J.W.; Lim, J.; Jang, H.W. Hydrothermally Obtained Type-Ⅱ Heterojunction Nanostructures of In2S3/TiO2 for Remarkably Enhanced Photoelectrochemical Water Splitting. Appl. Catal. B Environ. 2021, 295, 120276. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, S.; Bi, F.; Chen, J.; Wang, Y.; Cui, L.; Xu, J.; Zhang, X. Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: The crucial roles of interface defects and band structure. Appl. Catal. B Environ. 2022, 315, 121550. [Google Scholar] [CrossRef]
- Xu, S.W.; Li, Z.W.; Wen, J.H.; Qiu, P.; Xie, A.J.; Peng, H.P. Review of TiO2-Based Heterojunction Coatings in Photocathodic Protection. Acs Appl. Nano Mater. 2024, 7, 8464–8488. [Google Scholar] [CrossRef]
- Du, M.Q.; Cao, S.X.; Ye, X.Z.; Ye, J.F. Recent Advances in the Fabrication of All-Solid-State Nanostructured TiO2-Based Z-Scheme Heterojunctions for Environmental Remediation. J. Nanosci. Nanotechnol. 2020, 20, 5861–5873. [Google Scholar] [CrossRef]
- Wu, X.H.; Chen, G.Q.; Wang, J.; Li, J.M.; Wang, G.H. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution. Acta Phys.-Chim. Sin. 2023, 39, 2212016. [Google Scholar] [CrossRef]
- Ye, D.; Sun, L.; Feng, J.Y.; Gao, S.J.; Zhu, K.; Wu, K.; Guo, R.T. Progress on photocatalytic elimination of CO2 and gaseous pollutants over LDHs-based materials. J. Ind. Eng. Chem. 2025, 144, 175–191. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Wang, S.; Li, X.L.; Bai, P.; Yan, W.F.; Yu, J.H. Layered Inorganic Cationic Frameworks beyond Layered Double Hydroxides (LDHs): Structures and Applications. Eur. J. Inorg. Chem. 2020, 43, 4055–4063. [Google Scholar] [CrossRef]
- Chang, Q.F.; Zhang, X.L.; Wang, B.; Niu, J.T.; Yang, Z.X.; Wang, W.C. Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. Nanoscale 2022, 14, 1107–1122. [Google Scholar] [CrossRef]
- Hadnadjev-Kostic, M.; Vulic, T.; Lukic, N.; Jokic, A.; Karanovic, D. Photocatalytic Performance of TiO2-ZnAl LDH Based Materials: Kinetics and Neural Networks Approach. Pol. J. Environ. Stud. 2022, 31, 4117–4125. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A Review on Recent Progress, Challenges and Perspective of Layered Double Hydroxides as Promising Photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766. [Google Scholar] [CrossRef]
- Wang, L.Y.; Gao, X.; Cheng, Y.Q.; Zhang, X.X.; Wang, G.Q.; Zhang, Q.Y.; Su, J.X. TiO2@MgAl-layered double hydroxide with enhanced photocatalytic activity towards degradation of gaseous toluene. J. Photochem. Photobiol. A-Chem. 2019, 369, 44–53. [Google Scholar] [CrossRef]
- Suh, M.J.; Shen, Y.; Chan, C.K.; Kim, J.H. Titanium Dioxide-Layered Double Hydroxide Composite Material for Adsorption-Photocatalysis of Water Pollutants. Langmuir 2019, 35, 8699–8708. [Google Scholar] [CrossRef]
- Yang, K.; Yan, L.G.; Yang, Y.M.; Yu, S.; Shan, R.; Yu, H.Q.; Zhu, B.; Du, B. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Sep. Purif. Technol. 2014, 124, 36–42. [Google Scholar] [CrossRef]
- Yan, L.G.; Yang, K.; Shan, R.; Yan, T.; Wei, J.; Yu, S.; Yu, H.; Du, B. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 2015, 448, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Wei, J. Photoreduction of CO2 Using TiO2-Based Nano-Particles; Tianjin University: Tianjin, China, 2011. (In Chinese) [Google Scholar]
- Gao, X.; Zheng, K.; Zhang, Q.; Cao, X.; Wu, S.; Su, J. Self-assembly TiO2-RGO/LDHs nanocomposite: Photocatalysis of VOCs degradation in simulation air. Appl. Surf. Sci. 2022, 586, 152882. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Zhao, X.; Zhang, K.; Wang, X.; Liu, C.; Cui, J. Construction of two-dimensional nano-composite g-C3N4/LDHs and photocatalytic degradation of ciprofloxacin. Appl. Chem. Ind. 2025, 54, 881–886, 894. [Google Scholar] [CrossRef]
- Seftel, E.M.; Niarchos, M.; Mitropoulos, C.; Mertens, M.; Vansant, E.F.; Cool, P. Photocatalytic removal of phenol and methylene-blue in aqueous media using TiO2@LDH clay nanocomposites. Catal. Today 2015, 252, 120–127. [Google Scholar] [CrossRef]
- Singh, R.; Biswas, K. Synthesis optimization and investigation on electrical properties of Fe2+-doped Mg2TiO4 ceramics for energy storage. J. Mater. Sci. Mater. Electron. 2020, 31, 12434–12443. [Google Scholar] [CrossRef]
- Khan, M.A.; Fattah-alhosseini, A.; Kaseem, M. Recent advances in the design and surface modification of titanium-based LDH for photocatalytic applications. Inorg. Chem. Commun. 2023, 153, 110739. [Google Scholar] [CrossRef]
- Miljevic, B.; van der Bergh, J.M.; Vucetic, S.; Lazar, D.; Ranogajec, J. Molybdenum doped TiO2 nanocomposite coatings Visible light driven photocatalytic self-cleaning of mineral substrates. Ceram. Int. 2017, 43, 8214–8221. [Google Scholar] [CrossRef]
- Jia, W.; Wu, H.; Zheng, Y.; Liu, Z.; Cai, G.; Wen, J.; Hu, G.; Tang, T.; Li, X.; Jiang, L.; et al. Co/N Co-Doped MoS2 with high pseudocapacitive performance for solid-stateflexible supercapacitors. ACS Appl. Energy Mater. 2023, 6, 2570–2581. [Google Scholar] [CrossRef]
- Salehi, G.; Abazari, R.; Mahjoub, A.R. Visible-light-induced graphitic-C3N4@nickel-aluminum layered double hydroxide nanocomposites with enhanced photocatalyticactivity for removal of dyes in water. Inorg. Chem. 2018, 57, 8681–8691. [Google Scholar] [CrossRef]
- Ni, Z.M.; Xue, J.L. Synthesis of CuMgAl Layered Double Hydroxides for Efficient Photocatalysis of Rhodamine B. Chem. J. Chin. Univ. 2013, 34, 503–508. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, H.; Chao, C. Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. J. Photochem. Photobiol. A 2016, 317, 151–160. [Google Scholar] [CrossRef]
- Wei, J.; Gong, F.; Wang, S. Study on the Photocatalytic Degradation of Ibuprofen in Water by Load Modified TiO2. Technol. Water Treat. 2025, 51, 68–76. [Google Scholar] [CrossRef]
- Li, K.; Ding, Q.; Qin, L.; Li, K.; Ma, J. Preparation and photocatalytic performance of TiO2-SiO2 composites. Funct. Mater. 2024, 10, 10220–10236. [Google Scholar] [CrossRef]
- Hassani, A.; Eghbali, P.; Mahdipour, F.; Waclawek, S.; Lin, K.Y.A.; Ghanbari, F. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism. Chem. Eng. J. 2022, 453, 139556. [Google Scholar] [CrossRef]
- Xie, W.J.; Zhang, Y.; Xu, L.; Xie, D.; Jiang, L.; Dong, Y.M.; Yuan, Y. Degradation of Organic Dyes by the UCNP/h-BN/TiO2 Ternary Photocatalyst. Acs Omega 2023, 8, 48662–48672. [Google Scholar] [CrossRef]
- Rao, L.J.; Yang, Y.F.; Chen, L.K.; Liu, X.D.; Chen, H.X.; Yao, Y.Y.; Wang, W.T. Highly efficient removal of organic pollutants via a green catalytic oxidation system based on sodium metaborate and peroxymonosulfate. Chemosphere 2020, 238, 124687. [Google Scholar] [CrossRef]
Sample | K/min−1 | R2 |
---|---|---|
TiO2 | 0.007 2 | 0.968 7 |
AT13 | 0.009 1 | 0.976 6 |
AT12 | 0.010 2 | 0.987 5 |
AT11 | 0.054 3 | 0.980 5 |
AT21 | 0.016 8 | 0.965 4 |
AT31 | 0.027 0 | 0.969 6 |
Catalyst | Pollutant | Light Source | C0 (mg/L) | Time (min) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
g-C3N4/NiAl-LDH | RhB | Visible | 20 | 240 | 93.00 | [64] |
CuMgAl-LDHs | RhB | Visible | 10 | 240 | 85.20 | [65] |
g-C3N4/TiO2 | Methyl orange | Visible | 5 | 180 | 73.55 | [66] |
Fe-S/TiO2/GFC | Ibuprofen | Visible | 10 | 120 | 80.04 | [67] |
TiO2-SiO2 | RhB | Visible | 50 | 180 | 97.80 | [68] |
TiO2/LDHs | RhB | Visible | 15 | 70 | 98.20 | This research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Ren, L. Synthesis and Characterization of Visible-Light-Responsive TiO2/LDHs Heterostructures for Enhanced Photocatalytic Degradation Performance. Water 2025, 17, 2582. https://doi.org/10.3390/w17172582
Wei J, Ren L. Synthesis and Characterization of Visible-Light-Responsive TiO2/LDHs Heterostructures for Enhanced Photocatalytic Degradation Performance. Water. 2025; 17(17):2582. https://doi.org/10.3390/w17172582
Chicago/Turabian StyleWei, Jing, and Liying Ren. 2025. "Synthesis and Characterization of Visible-Light-Responsive TiO2/LDHs Heterostructures for Enhanced Photocatalytic Degradation Performance" Water 17, no. 17: 2582. https://doi.org/10.3390/w17172582
APA StyleWei, J., & Ren, L. (2025). Synthesis and Characterization of Visible-Light-Responsive TiO2/LDHs Heterostructures for Enhanced Photocatalytic Degradation Performance. Water, 17(17), 2582. https://doi.org/10.3390/w17172582