Assessing the Accuracy of Gridded Precipitation Products in the Campania Region, Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Description
2.3. CHIRPS
2.4. PERSIANN-CDR
2.5. ERA5-Land
2.6. TerraClimate
2.7. Continuous Metrics Evaluation
2.8. Categorical Metrics Evaluation
2.9. Bias Decomposition
2.10. Sen’s Slope
3. Results and Discussion
Limitations and Future Direction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarli, R.; Nasiri, V.; Hawryło, P.; Socha, J. Evaluating the accuracy of the global precipitation products: A time-series analysis in Poland. Clim. Dyn. 2025, 63, 155. [Google Scholar] [CrossRef]
- Gampe, D.; Ludwig, R. Evaluation of Gridded Precipitation Data Products for Hydrological Applications in Complex Topography. Hydrology 2017, 4, 53. [Google Scholar] [CrossRef]
- Kidd, C.; Takayabu, Y.N.; Skofronick-Jackson, G.M.; Huffman, G.J.; Braun, S.A.; Kubota, T.; Turk, F.J. The Global Precipitation Measurement (GPM) Mission. In Satellite Precipitation Measurement: Volume 1; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–23. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Sarwar, F.; Tariq, F.; Shazil, M.S.; Batool, S.; Mahmood, S.A. Evaluating Future Climate Projections in Upper Indus Basin through GFDL-ESM2M Model. Int. J. Innov. Sci. Technol. 2023, 5, 440–460. [Google Scholar]
- Westra, S.J.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.R.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Z.; Wang, L.; Huang, Y.; Wang, Y.; Li, L. Rainfall Spatial Estimations: A Review from Spatial Interpolation to Multi-Source Data Merging. Water 2019, 11, 579. [Google Scholar] [CrossRef]
- Adler, R.F.; Gu, G.; Sapiano, M.; Wang, J.-J.; Huffman, G.J. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979–2014). Surv. Geophys. 2017, 38, 679–699. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Ma, Z.; Gao, Z.; Tang, G. Diverging identifications of extreme precipitation events from satellite observations and reanalysis products: A global perspective based on an object-tracking method. Remote Sens. Environ. 2023, 288, 113490. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Yan, S.; Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 2022, 605, 127353. [Google Scholar] [CrossRef]
- Chen, C.; Hu, B.; Li, Y. Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy. Hydrol. Earth Syst. Sci. 2021, 25, 5667–5682. [Google Scholar] [CrossRef]
- Hsu, J.; Huang, W.-R.; Liu, P.-Y.; Li, X. Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sens. 2021, 13, 254. [Google Scholar] [CrossRef]
- Khalid, M.R.; Ahmed, S.; Abdullah, A. Assessing NASA-POWER Precipitation Product in Predicting Surface Flow: Lower Jhelum River Case Study. Air Soil Water Res. 2024, 17, 11786221241280753. [Google Scholar] [CrossRef]
- Shazil, M.S.; Ahmad, S.; Mahmood, S.A.; Naqvi, S.A.A.; Purohit, S.; Tariq, A. Spatio-temporal analysis of hydrometeorological variables for terrestrial and groundwater storage assessment. Groundw. Sustain. Dev. 2024, 27, 101333. [Google Scholar] [CrossRef]
- Vernay, M.; Lafaysse, M.; Augros, C. Radar-based high-resolution ensemble precipitation analyses over the French Alps. Atmos. Meas. Tech. 2025, 18, 1731–1755. [Google Scholar] [CrossRef]
- Tri, D.Q.; Thu, N.V.; Hoa, B.T.K.; Nguyen-Thi, H.A.; Van Hoa, V.; Hue, L.T.; Dat, D.T.; Pham, H.T.T. Application of Radar-Based Precipitation Data Improves the Effectiveness of Urban Inundation Forecasting. Sustainability 2024, 16, 3736. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Chen, T.; Li, J.; Zhang, Y.; Chen, H.; Li, P.; Che, H. Evaluation of Hourly Precipitation Characteristics from a Global Reanalysis and Variable-Resolution Global Model over the Tibetan Plateau by Using a Satellite-Gauge Merged Rainfall Product. Remote Sens. 2023, 15, 1013. [Google Scholar] [CrossRef]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.-P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.-E. Evaluation of 23 gridded precipitation datasets across West Africa. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef]
- Ahmed, J.S.; Buizza, R.; Dell’aCqua, M.; Demissie, T.; Pè, M.E. Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia. Meteorol. Atmos. Phys. 2024, 136, 17. [Google Scholar] [CrossRef]
- Fessehaye, M.; Franke, J.; Brönnimann, S. Evaluation of satellite-based (CHIRPS and GPM) and reanalysis (ERA5-Land) precipitation estimates over Eritrea. Meteorol. Z. 2022, 31, 401–413. [Google Scholar] [CrossRef]
- Kouakou, C.; Paturel, J.-E.; Satgé, F.; Tramblay, Y.; Defrance, D.; Rouché, N. Comparison of gridded precipitation estimates for regional hydrological modeling in West and Central Africa. J. Hydrol. Reg. Stud. 2023, 47, 101409. [Google Scholar] [CrossRef]
- Zargar, M.; Bronstert, A.; Francke, T.; Zimale, F.A.; Worku, K.B.; Wiegels, R.; Lorenz, C.; Hageltom, Y.; Sawadogo, W.; Kunstmann, H. Comparison and hydrological evaluation of different precipitation data for a large tropical region: The Blue Nile Basin in Ethiopia. Front. Water 2025, 7, 1536881. [Google Scholar] [CrossRef]
- Marra, A.C.; Federico, S.; Montopoli, M.; Avolio, E.; Baldini, L.; Casella, D.; D’adderio, L.P.; Dietrich, S.; Sanò, P.; Torcasio, R.C.; et al. The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations. Remote Sens. 2019, 11, 1690. [Google Scholar] [CrossRef]
- Wood, R.R.; Janzing, J.; van Hamel, A.; Götte, J.; Schumacher, D.L.; Brunner, M.I. Comparison of high-resolution climate reanalysis datasets for hydro-climatic impact studies. EGUsphere 2024. [Google Scholar] [CrossRef]
- Capozzi, V.; Annella, C.; Budillon, G. Classification of daily heavy precipitation patterns and associated synoptic types in the Campania Region (southern Italy). Atmos. Res. 2023, 289, 106781. [Google Scholar] [CrossRef]
- Sarigil, G.; Neri, M.; Toth, E. Evaluation of national and international gridded meteorological products for rainfall-runoff modelling in Northern Italy. J. Hydrol. Reg. Stud. 2024, 56, 102031. [Google Scholar] [CrossRef]
- Moccia, B.; Buonora, L.; Bertini, C.; Ridolfi, E.; Russo, F.; Napolitano, F. What is our pick? Assessment of satellite and reanalysis precipitation datasets over Italy. J. Hydrol. Reg. Stud. 2025, 60, 102487. [Google Scholar] [CrossRef]
- Cammalleri, C.; Sarwar, A.N.; Avino, A.; Nikravesh, G.; Bonaccorso, B.; Mendicino, G.; Senatore, A.; Manfreda, S. Testing trends in gridded rainfall datasets at relevant hydrological scales: A comparative study with regional ground observations in Southern Italy. J. Hydrol. Reg. Stud. 2024, 55, 101950. [Google Scholar] [CrossRef]
- Capozzi, V.; Rocco, A.; Annella, C.; Cretella, V.; Fusco, G.; Budillon, G. Signals of change in the Campania region rainfall regime: An analysis of extreme precipitation indices (2002–2021). Meteorol. Appl. 2023, 30, e2168. [Google Scholar] [CrossRef]
- Hayden, L.; Liu, C.; Liu, N. Properties of Mesoscale Convective Systems Throughout Their Lifetimes Using IMERG, GPM, WWLLN, and a Simplified Tracking Algorithm. J. Geophys. Res. Atmos. 2021, 126, e2021JD035. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Capozzi, V.; Montopoli, M.; Mazzarella, V.; Marra, A.C.; Roberto, N.; Panegrossi, G.; Dietrich, S.; Budillon, G. Multi-Variable Classification Approach for the Detection of Lightning Activity Using a Low-Cost and Portable X Band Radar. Remote Sens. 2018, 10, 1797. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Jain, S.; Tiwari, V.; Thapa, A.; Mangla, R.; Jaiswal, R.K.; Kumar, V.; Tiwari, S.; Tulbure, M.G.; Galkate, R.; Lohani, A.K.; et al. Performance Evaluation of Google Earth Engine Based Precipitation Datasets Under Different Climatic Zones over India. Remote Sens. Earth Syst. Sci. 2022, 5, 263–276. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Ghomlaghi, A.; Nasseri, M.; Bayat, B. Comparing and contrasting the performance of high-resolution precipitation products via error decomposition and triple collocation: An application to different climate classes of the central Iran. J. Hydrol. 2022, 612, 128298. [Google Scholar] [CrossRef]
- Rupp, D.E.; Li, S.; Mote, P.W.; Shell, K.M.; Massey, N.; Sparrow, S.N.; Wallom, D.C.H. Seasonal spatial patterns of projected anthropogenic warming in complex terrain: A modeling study of the western US. Clim. Dyn. 2017, 48, 2191–2213. [Google Scholar] [CrossRef]
- da Silva, R.M.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Nogueira, P.M. Spatial Analysis in Geology Using R.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Torre, D.D.; Di Marco, N.; Menapace, A.; Avesani, D.; Righetti, M.; Majone, B. Suitability of ERA5-Land reanalysis dataset for hydrological modelling in the Alpine region. J. Hydrol. Reg. Stud. 2024, 52, 101718. [Google Scholar] [CrossRef]
- Tang, H.; Wang, X.Y.; Chen, F.L.; Jiang, L.; He, C.F. Simulation of Manas River runoff based on ERA5-Land dataset. Earth Sci. Front. 2022, 29, 271–283. [Google Scholar] [CrossRef]
- Cui, W.; Galarneau, T.J.; Hoogewind, K.A. Changes in Mesoscale Convective System Precipitation Structures in Response to a Warming Climate. J. Geophys. Res. Atmos. 2024, 129, e2023JD039920. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef]
- Ghajarnia, N.; Arasteh, P.D.; Liaghat, M.; Araghinejad, S. Error Analysis on PERSIANN Precipitation Estimations: Case Study of Urmia Lake Basin, Iran. J. Hydrol. Eng. 2018, 23, 05018006. [Google Scholar] [CrossRef]
- Baig, F.; Abrar, M.; Chen, H.; Sherif, M. Evaluation of Precipitation Estimates from Remote Sensing and Artificial Neural Network Based Products (PERSIANN) Family in an Arid Region. Remote Sens. 2023, 15, 1078. [Google Scholar] [CrossRef]
- Du, H.; Tan, M.L.; Zhang, F.; Chun, K.P.; Li, L.; Kabir, M.H. Evaluating the effectiveness of CHIRPS data for hydroclimatic studies. Theor. Appl. Clim. 2024, 155, 1519–1539. [Google Scholar] [CrossRef]
- Dayan, U.; Nissen, K.; Ulbrich, U. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat. Hazards Earth Syst. Sci. 2015, 15, 2525–2544. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Furcolo, P.; Pelosi, A. Orographic Effects on Extreme Rainfall at Different Durations: A Case Study in Campania Region (Southern Italy). J. Geosci. Environ. Prot. 2018, 6, 77–88. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar] [CrossRef]
- Gadedjisso-Tossou, A.; Adjegan, K.I.; Kablan, A.K.M. Rainfall and Temperature Trend Analysis by Mann–Kendall Test and Significance for Rainfed Cereal Yields in Northern Togo. Sci 2021, 3, 17. [Google Scholar] [CrossRef]
- Dad, J.M.; Muslim, M.; Rashid, I.; Reshi, Z.A. Time series analysis of climate variability and trends in Kashmir Himalaya. Ecol. Indic. 2021, 126, 107690. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, M.K.; Singh, P.K.; Singh, V. An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India. Int. J. Clim. 2019, 40, 3667–3688. [Google Scholar] [CrossRef]
- Mallakpour, I.; Sadeghi, M.; Mosaffa, H.; Asanjan, A.A.; Sadegh, M.; Nguyen, P.; Sorooshian, S.; AghaKouchak, A. Discrepancies in changes in precipitation characteristics over the contiguous United States based on six daily gridded precipitation datasets. Weather Clim. Extrem. 2022, 36, 100433. [Google Scholar] [CrossRef]
Dataset | Spatial Resolution | Time | Source | URL |
---|---|---|---|---|
ERA 5 | 0.1° | 1983–2022 | GEE | https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR |
PERSIANN | 0.25° | 1983–2022 | GEE | https://developers.google.com/earth-engine/datasets/catalog/NOAA_PERSIANN-CDR |
TerraClimate | 0.04° | 1983–2022 | GEE | https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE |
CHIRPS | 0.05° | 1983–2022 | GEE | https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY |
Ground data | NA | 2003–2022 | Civil Protection Agency | https://www.regione.campania.it/regione/en/topics/civil-protection/civil-protection-agency |
Digital Elevation Model (DEM) | 30 m | 2000 | NASA SRTM | https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003 |
Parameter | Expression | Range | Perfect Value |
---|---|---|---|
RMSE | [0, ∞] | 0 | |
MAE | [0, ∞] | 0 | |
MBE | [−∞, ∞] | 0 | |
NSE | [−∞, 1] | 1 | |
R2 | [0, 1] | 1 |
Parameter | Expression | Range | Perfect Value |
---|---|---|---|
Accuracy | 0–1 | 1 | |
POD | 0–1 | 1 | |
FAR | 0–1 | 0 | |
POFD | 0–1 | 0 | |
PSS | −1–1 | 1 |
Parameter | Expression | Range |
---|---|---|
Systematic Bias (SB) | where | [0, ∞) |
Unsystematic Error (NU) | [0, ∞) | |
Percentage Systematic Bias (SB%) | [0, 100]% | |
Percentage Unsystematic Error (NU%) | [0, 100]% | |
Slope (β) | (−∞, ∞) | |
Intercept (α) | (−∞, ∞) |
Data | MBE (mm) | R2 | NSE | RMSE (mm) | MAE (mm) |
---|---|---|---|---|---|
ERA5-Land | 1.91 | 0.93 | 0.93 | 18.32 | 13.43 |
CHIRPS | −28.0 | 0.81 | 0.57 | 45.54 | 31.09 |
PERSIANN | −16.84 | 0.72 | 0.63 | 42.20 | 27.62 |
TerraClimate | −26.37 | 0.67 | 0.51 | 49.00 | 33.34 |
Data | PSS | POD | POFD | FAR | Accuracy |
---|---|---|---|---|---|
ERA5-Land | 0.87 | 0.95 | 0.07 | 0.02 | 0.95 |
CHIRPS | 0.76 | 0.82 | 0.05 | 0.02 | 0.85 |
PERSIANN | 0.74 | 0.91 | 0.16 | 0.07 | 0.89 |
TerraClimate | 0.72 | 0.79 | 0.08 | 0.03 | 0.83 |
Satellite | MSE | MBE | Slope | Intercept | SB_% | NU_% |
---|---|---|---|---|---|---|
ERA5-Land | 347.66 | 1.90 | 0.93 | 8.40 | 7.71 | 92.29 |
PERSIANN | 1780.91 | −16.84 | 0.58 | 23.19 | 65.22 | 34.78 |
TerraClimate | 2454.27 | −26.37 | 0.56 | 15.25 | 66.98 | 33.02 |
CHIRPS | 2074.30 | −28.03 | 0.56 | 13.26 | 82.89 | 17.11 |
Dataset | Overall Trend | Winter | Spring | Summer | Fall |
---|---|---|---|---|---|
PERSIANN | 0.023/0.076 | 1.53/0.289 | 0.18/0.683 | 0.74/0.357 | 1.81/0.029 |
ERA5-Land | 0.028/0.124 | 1.61/0.345 | 0.72/0.448 | 0.54/0.616 | 2.68/0.091 |
TerraClimate | −0.007/0.577 | 0.01/1.000 | −0.50/0.435 | 0.29/0.666 | 0.06/0.972 |
CHIRPS | 0.012/0.266 | 0.52/0.584 | 0.31/0.584 | 0.22/0.552 | 1.34/0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shazil, M.S.; Aleem, M.; Ahmad, S.; Abdullah, A.; Greco, R. Assessing the Accuracy of Gridded Precipitation Products in the Campania Region, Italy. Water 2025, 17, 2585. https://doi.org/10.3390/w17172585
Shazil MS, Aleem M, Ahmad S, Abdullah A, Greco R. Assessing the Accuracy of Gridded Precipitation Products in the Campania Region, Italy. Water. 2025; 17(17):2585. https://doi.org/10.3390/w17172585
Chicago/Turabian StyleShazil, Muhammad Shareef, Muhammad Aleem, Sheharyar Ahmad, Abdullah Abdullah, and Roberto Greco. 2025. "Assessing the Accuracy of Gridded Precipitation Products in the Campania Region, Italy" Water 17, no. 17: 2585. https://doi.org/10.3390/w17172585
APA StyleShazil, M. S., Aleem, M., Ahmad, S., Abdullah, A., & Greco, R. (2025). Assessing the Accuracy of Gridded Precipitation Products in the Campania Region, Italy. Water, 17(17), 2585. https://doi.org/10.3390/w17172585